
NASA/TM-2001-209622

A Closed-Loop Optimal Neural-Network Controller to
Optimise Rotorcraft Aeromechanical Behaviour
Volume 1: Theory and Methodology

Jane Anne Leyland

March 2001

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA's scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA's institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or theoreti-
cal analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA's counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent
of graphic presentations.

TECHNICAL MEMORANDUM. Scientific and
technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

CONFERENCE PUBLICATION. Collected
papers from scientific and technical confer-
ences, symposia, seminars, or other meetings
sponsored or cosponsored by NASA.

SPECIAL PUBLICATION. Scientific, technical,
or historical information from NASA programs,
projects, and missions, often concerned with
subjects having substantial public interest.

TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA's mission.

Specialized services that complement the STI
Program Office's diverse offerings include creating
custom thesauri, building customized databases,
organizing and publishing research results. . . even
providing videos.

For more information about the NASA STI
Program Office, see the following:

Access the NASA STI Program Home Page at
http://www. sti.rtasa.gov

E-mail your question via the Internet to
help@sti.nasa.gov

Fax your question to the NASA Access Help
Desk at (301) 621-0134

Telephone the NASA Access Help Desk at
(301) 621-0390

Write to:
NASA Access Help Desk
NASA Center for Aerospace Information
7 I2 1 Standard Drive
Hanover, MD 2 1076- I320

NASAITM-2001-209622

A Closed-Loop Optimal Neural-Network Controller to
Optimise Rotorcraft Aeromechanical Behaviour
Volume 1: Theory and Methodology
Jane Anne Leyland
Ames Research Center; Mofsett Field, California

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035- 1000

~

March 2001

Available from:

NASA Center for Aerospace Information
7 12 1 Standard Drive
Hanover, MD 2 1076- 1 320
(30 1) 62 1 -0390

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22 16 1

(703) 487-4650

Table of Contents

me
TitlePage for: A ClosebLoop Optimal NeuraCNetwork Controller

to Optimise Ratorcraft Aeromechanical Behaviour i

Tableof Cmtents iii

Abstrlrct V

1.0 introduction 1

2.0 Technical
2.1 General Uosed-Loop Controller

2.1.1 Systems Models of a Controlled Response
2.1.1.1 Fixed Form System Models

2.1.1.2 Free Form System Models

2.1.2 Primary Controller Function
2.2 An Optimal Closed-Loop Neural-Network Controller

2.2.1 The NauralcNetwork Function and its Geometry
2.2.2 NeuraCNetwork Filter Functkns/Pass-Through Functions 14

2.2.2.1 Constant Function: the No-Pass Function 15
2.2.2.2 Linear Function: the Diract-prus Function 16
2.2.2.3 Hyperbdii Tangent: the Threshold Function 17
2.2.2.4 First Derivative of the Hyperbolic Tangent: the Pulse Function 18

20 2.2.3 The Sliding Window of Data Acquisition
2.2.4 OptkMl Update of Neural-Network Model

2.2.5 Control Optimisation
22
28

2.3 The Optimal Constants and Optimal Control Selection Processes as
Non-linear Programming Problems 31

32 2.3.1 The General Non-linear Programming Problem
2.3.2 A Solution to the General Non-linear Programming Problem

2.4.1 On-une Trajectory Test Data
2.4.2 Off-Lh Trajectw Data Tables
2.4.3 Analytic Trajectory Synthesis

2.4.3.1 LinearFtamp Function
2.4.3.2 Serpentine Curve Function
2.4.3.3 Witch of Agnesi Function
2.4.3.4 Inverted Witch of Agnesi Function
2.4.3.5 Enveloped Sinusoidal Function
2.4.3.6 Hyperbolic Tangent: the Threshold Function
2.4.3.7 First Derivative of the Hyperbolic Tangent: the Pulse Function
2.4.3.8 Uniformly Distributed Random Function

2.4 Trajectory Data

2.4.4 User Supplied Trajectory Model

2.5 The StandAlone Optimal Neural-Network Controller System

33

37
37
38

38
42
43
44
45
46
48
49
51
51
52

iii

Table of Contents (Continued)

2.6 Results
3.0 Conclusions and Recommendations

4.0 References
Figures
Appendix A Principal Parameters In the OFTIMNN Code

Title Page for: Principal Parameters In the OPTlMNN Code
Table of Contents
Parameter List

INPUT Parameters to the OPTIMNN Code
Title Page for; INPUT Parameters to the OPTIMNN Code
Group 1 : Dimensions of the Principal Arrays of the OPTIMNN System
Group 2: Overall Trajectory (Excluding Learning and Control

Trajectories) Propagation Parameters
Group 3: Learning Trajectory Propagation Parameters
Group 4: Controlled Trajectory Propagation Parameters
Group 5: Neural Network Parameters
Group 6: Analytic Trajectory Synthesis Parameters
Group 7: Neural-Network Optimisation Parameters During the

Learning Trajectory
Group 8: Neural-Network Optimisation Parameters During the

Controlled Trajectory
Group 9: Control Optimisation Parameters During the Controlled

Trajectory
Internally Set Parameters in the OPTIMNN Code

Title Page for: Internally Set Parameters in the OPTIMNN Code
Group A: Internally Set Parameters for Trajectory Propagation
Group 8: Internally Set Parameters for Neural Network Operation
Group C: Internally Set Parameters for the Optimisation Procc~lses
Group D: Internally Set Constants

Appendix B Principal Routines in the OPTIMNN Code
Title Page for: Principal Parameters in the OPTIMNN Code
Table of Contents
Routines List

Group 1 : Principal OPllMNN Peculiar Routines
Group 2: Principal IMSL MATWBRARY Routines used by OPTIMNN
Group 3: Principal VAWVMS FORTRAN Routines used by OPTIMNN

References
Appendix C

Appendix D

Appendix E

Listing of the OPTIMNN Code
Listing of the Input and Output for Sample Case 1
Listing of the Input and Output for Sample Case 2

eirole
53
56

59
61

A

1

iii

V

1
2

6
9
11
14
16

21

24

27

30
31
38
39
40

6

1

iii

V

1
5
6
11
C

D

E

iv

ABSTRACT

A Closed-Loop Optimal Neural-Network Controller
to

Optimise Rotorcraft Aeromechanical Behaviour

by

Jane Anne byland. PhD/AMES
NASA-Ames Research Centre

Moffett Field. California

Previous development and design of closed-loop controllers to optimise rotorcraft

aeromechanical behaviour focused on the simple "standard" closed-loop controller

which employs an actively updated linear plant model (i.e., a single system matrix) to

model the rotorcraft and simplified pseudo-optimal methods to determine the control.

A recent development was the use of modem constrained optimisation techniques

rather than the commonly used pseudcroptirnal methods to determine the optima!

control subject to constraints for a linear plant model. One promising controller

scheme which is of interest to analysts at this time utilises a 'neural-network"

scheme to provide a general non-linear model the plant. Accordingly a closed-loop

optimal neural-network controller was developed which employs a general non-linear

neural-network function rather than a linear function to model the plant. Modem

constrained optimisation methods are used to determinehpdate the constants in the
neural-network plant model as well as in the determination of the optimal control

vector.

Current data is read, weighted, and added to a sliding data window. When the

specified maximum data window length (Le., the number of data sets allowed in the

data window) is exceeded, the oldest data set is purged and the remaining data sets
are re-weighted. This procedure provides at least four additional degrees-of-freedom

in addition to the size and geometry of the neural-network itself with which to

optimise the overall operation of the controller (e.g., the update of the non-linear

neural-network plant model and the determination of the optimal control). These

additional degrees-of-freedom are: 1. the maximum length of the sliding data

V

window, 2. the frequency of neural-network updates, 3. the weighting of the

individual data sets within the sliding window, and 4. the maximum number of

optimisation iterations used for the neural-network updates.

Cases run to date indicate that the controller is operating as planned, but that

the controller performance as measured by the rate of convergence of the

neural-network parameters is slow. This is due to the fact that the determination

of the neural-network parameters by minimisation of an error metric of the

neural-network function values is an ill-posed problem with multiple solutions for

these parameters. Elimination of multiple solutions with corresponding acceleration

of convergence appears to be possible with the addition of a regularisation functional

to the error metric performance index.

vi

1 .O INTROOUCTlON

Given the predicted growth in air transportation, the potential exists for significant

market niches for rotary wing subsonic vehicles. Technological advances which

optimise rotorcraft aeromechanical behaviour can contribute significantly to both their

commercial and military development, acceptance, and sales. Examples of the

optimisation of rotorcraft aeromechanical behaviour which are of interest include the

minimisation of vibration and/or loads. The reduction of rotorcraft vibration and loads

is an important means to extend the useful life of the vehicle and to improve its ride

quality. Although vibration reduction can be accomplished by using passive dampers

and/or tuned masses, active closed-loop control has the potential to reduce vibration

and loads throughout a.wider flight regime whilst requiring less additional weight to

the aircraft man ihat obtained by using passive rnethads. It is ernphasised that the

analysis described herein is applicable to all those rotorcraft aeromechanical

behaviour optimisation problems for which the relationship between the harmonic

control vector and the measurement vector can be adequately described by a

neural-network model.

Previous development and design of closed-loop controllers to optimise rotorcraft

aeromechanical behaviour focused on the simple "standard" closed-loop controller

which employs an actively updated linear plant model (i.e., a single system matrix) to

model the rotorcraft and simplified pseudo-optimal methods to determine the control.

A recent development (Reference 1) was the use of modem constrained optimisation

techniques (References 2 through 8) rather than the commonly used pseudo-optimal

methods to determine the optimal control subject to constraints for a linear plant

model. One promising controller scheme which is of interest to analysts at this time

utilises a "neural-network" scheme to provide a general non-linear model of the

1

plant. Accordingly a closed-loop optimal neural-network controller was developed

which employs a general non-linear neural-network function rather than a linear

function to model the plant. The modern constrained optimisation methods

described in References 2 through 8 are used to determinehpdate the constants

in the neural-network plant model and to determine the optimal control vector by

employing the IMSL main driver routines DNCONF and/or DNCONG and their

subroutines as described in Reference 9.

Current data is read, weighted, and added to a sliding data window. When the

specified maximum data window length (Le., the number of data sets allowed in the

data window) is exceeded, the oldest data set is purged and the remaining data sets

are re-weighted. This procedure provides at least four additional degrees-of-freedom

in addition to the size and geometry of the neural-network itself with which to

optimise the overall operation of the controller (i.e., the update of the non-linear

neural-network function plant model and the determination of the optimal control).

These additional degrees-of-freedom are: 1. the maximum length of the sliding data

window, 2. the frequency of the neural-network updates, 3. the weighting of the

individual data sets within the sliding window, and 4. the maximum number of

optimisation iterations used for the neural-network updates.

2

2.0 TECHNICAL

A typical general closed-loop controller which is the reference controller for this study

is discussed first, noting the two forms of systems models which are of interest for

rotorcraft aeromechanical behaviour problems. Next, the proposed optimal

closed-loop neural-network (N2) controller is presented. The analytic non-linear

neural-netwok function fN2(e) or more specifii~ty (e) when

the neurone distribution (i.e., the number of nodes per layer) is defined, and an

example geometrical schematic is presented for the 3-5-3-2 neural-network function

(e). Several neural-network node filters are presented and the 'sliding

window" of data acquisition is explained. The optimisation method used to update

the neural-network parameters and the control vector is discussed, and various

sources a! !rEjectory data are Identified. The stand-alone optimal neural-network

controller system which was developed during this study is described and the results

to date of using this controller system are discussed. Lastly, conclusions and

recommendations are presented.

I, - 12 - 1.3 - - - * * - IK - JK

G-"-"-'

3

2.1 General Closed-Loop Controller

The general controller scheme assumes that the measured behaviour (i.e., the

measurement state vector, the measurement vector, the Z-vector, etc.) of a physical

system (Le., the rotorcraft, the plant, etc.) can be completely controlled by means of

an appropriate system control vector (i.e., the control vector, the &vector, etc.). A

schematic representation of this fundamental relationship appears in the upper part

of Figure 1. The general controller uses this relationship together with a

mathematical model of it to estimate the control vector to be used in a future duty

cycle which will satisfy some criteria. The relationship between the control vector,

the mathematical model of the rotorcraft, and the measurement state vector is

schematically shown in the lower part of Figure 1.

The general closed-loop controller (see Figure 2) is comprised of two parts: 1) the

operating rotorcraft plant which generates the measurement vector for the currently

specified control vector, and 2) the controller itself which estimates the control vector

which will satisfy some criteria to be used in a future duty cycle. This latter function

uses the mathematical model of the rotorcraft to estimate the new control vector.

The parameters of the model can be updated during the trajectory if an appropriate

update scheme is available. The new estimated control vector is then input to the

operating rotorcraft to be used in a future duty cycle. This looping process is

continued until completion of the last duty cycle when the operation of the controller

is terminated.

4

2.1.1 Systems Models of a Controlled Response

Mathematical models of the control vector - operating rotorcraft - measurement

vector relationship used in the general closed-loop controller to estimate the control

vector can be conveniently placed into one of two categories: 1) fixed form system

models, and 2) free-form system models. As these category names suggest, the

fixed form models are rigid and not too flexible even though their parameters can

sometimes be updated during controller operation, and consequently they might not

be suitable for experimental applications. The free form system models are not rigid

and can be quite flexible, and consequently they can be quite amenable to

experimental applications.

2.1.1.1 Fixed Form Systems Models

The fixed form systems models have a rigid mathematical function form/shape.

Although this fondshape might be adjusted or distorted by appropriate selection of

the values of the model parameters either initially or during the trajectory by a

parameter identification process, the basic function shape is what it is and cannot be

substantially changed by the model parameters. Examples of fixed form models

include:

Z = T e + Z , Linear (Simplistic)

Non-Linear (Quadratic)
0

z = eeTA2 + A e + z
1

Z = BTunh(A0) + Z, Non-Linear (Hyperbolic Tangent)

-

5

2.1.1.2 Free Form Systems Models

The free form systems models do not have a rigid mathematical function fodshape.

The fondshape can be changed substantially by appropriate selection of the values

of the model parameters either initially or during the trajectory by a parameter

identification process. That is, the model is one for which the representing

function(s) can be made to approximate operating rotorcraft relationship as closely

as required at a finite number of points by appropriately selecting the values of the

model parameters. Examples of free form models include:

z = &,c) Surface Fit Functions

I K -JK 1, - l2 - I3 - -
(8,C) Neural-Network Functions

where c is the attenuation coefficient matrix.

1, -I* - 1, - - IK - JK defines the number of origin and destination

nodes for each neural-network layer. The

convention used here uses the superscript

chain to specify the number of available node

positions at the origin side (i.e., the left side) of

each layer, except for the last superscript value

in the chain which denotes the number of

available node positions at the destination side

(i.e., the right side) of the last layer.

8 is the control vector.

6

The set of neural-network functions for this purpose is actually a subset of the set of

all surface fit functions. The use of neural-network functions to model the operating

rotorcraft within a closed-Imp optimal controller being used to optimise rotorcraft

aeromechanical behaviour is the subject of this study.

2.1 9 Primary Controller Function

As the title of this report indicates, the primary function of the closed-loop controller

described in this document is to optimise specified rotorcraft aeromechanical

behaviour by appropriate selection of the elements of the control vector.

7

2.2 An Optimal Closed-Loop Neural-Network Controller

The optimal closed-loop neural-network controller which was designed as part of this

study and which is described herein, is an extension of the general controller scheme

described in Section 2.1. As in the case of the general controller, the optimal

closed-loop neural-network controller assumes that the measured behaviour

(Le., the measurement state vector, the measurement vector, the Z-vector, etc.)

of a physical system (i.e., the rotorcraft, the plant, etc.) can be completely

controlled by means of an appropriate system control vector (i.e., the control

vector, the 8-vector, etc.). A schematic representation of this fundamental

relationship is presented in Figure 1.

The optimal closed-loop neural-network controller (see Figure 3) differs from the

general controller in that the mathematical model of the operating rotorcraft is

specified to be a neural-network function whose parameters can be identified and

updated during both a learning trajectory phase and a controlled trajectory phase.

The learning trajectory phase is that part of the trajectory during which only the

model parameters are identified and updated. The control vector is neither optimised

nor updated during this phase. The controlled trajectory phase is that part of the

trajectory during which either or both the control vector can be optimised and

updated, and the neural-network model parameters can be identified and updated.

8

2.2.1 The NeuraENetwork Function and Its Geometry

 he neural-network function f 3 0) as used in this study, is comprised of a connected

set of nodes arranged in layers between the input control vector (i.e., the @-vector)

and the output measurement vector (Le., the Z-vector). The convention adopted

during this study for pictorial representations (see Figure 4) is that the signal flow and

layer indexing goes from left to right, that is the @-vector is input to the left of

f,,(0) with resulting neural-network internal signal flow proceeding from left to right

until the signals exit as the Z-vector at the right extremity of &(e). The lower case

letter k denotes the layer index number in ascending order from left to right, that is

k increases monotonically from 1 to K when proceeding from the @-vector to the

Z-vector where the upper case letter K denotes the index number of the last layer.

As mentioned previously in Section 2.0, Figure 4 !!!&rates the geometry of the
3-5-3-2 3-5-3-2 neural-network function fN2 (0) *

I, - 12 - 1.3 - - - - - IK - JK
The general form of the neura~-network function is fN. (e) I

where the value of lk for k = 1,2,3, - - - K specifies the number of available node

positions at the origin side (i.e., the left side) of the k-th layer and the value of JK

specifies the number of available node positions at the destination side (i.e., the right

side) of the last layer (i.e., the K-th layer). It is emphasised that the actual number of

nodes that are used for f,,(o) in a specific application need not necessarily be

maximum number that are available as specified by the values in the superscript

chain. If

9

1 is the origin index, that is the node number on the origin side (i.e., the left

side), of the k-th layer. The convention adopted during this study for

pictorial representations (see Figure 4) is that the node number increases

with descending position. i E lk where I k is the set of all active origin

nodes for the k-th layer.

i is the destination index, that is the node number on the destination side

(i.e., the right side), of the k-th layer. The convention adopted during this

study for pictorial representations (see Figure 4) is that the node number

increases with descending position. i E Jk where Jk is the set of all

active destination nodes for the k-th layer.

k is the layer index number in ascending order from left to right, that is k

increases monotonically from 1 to K when proceeding from the 8-vector

to the 2-vector where the upper case letter K denotes the index number

of the last layer.

then the signal path between specific nodes is uniquely defined by the indices i, j , k.

If

c i . j , k is the attenuation coefficient for the signal directed from the i-th origin

node of the k-th layer toward thej-th destination node of the k-th layer,

where c ; , j + k is constrained according to:

r 1

for

f (U,.k) is the filter function (i.e., pass-through function) which is applied just prior

to (Le., immediately to the left of) the j-th destination node of the k-th

layer.

uj. k is the summation of all the attenuated signals directed from the active

origin nodes of the k-th layer toward thej-th destination node of the k-th

layer.

r . is the exit signal from the kth origin node of the k-th layer which is

directed toward thej-th destination node of the k-th layer.

“ i .J .k

is the arriving signal at the j-th destination node of the k-th layer. 8.k

then

where

It is noted that the above expression for Uj,k can be generalised in terms of

Kolmogorov-Gabor (KG) multinomials (Reference 10) of the form

11

+
' i . k

X . X . + c c ' p . 4 . j . k p , J . k 4 . J . k

x . x . + X c c cc P . q . 1 . j . k p , j . k q , ~ , k 1 , J . k

The input and node compatibiIity/interface constraints are applied at each layer

boundary. Specifically

-
xi, j .k = Yi,k-1

where it is assumed that the common signal source constraints apply, that is all the

signals exiting from a specific node are the same. Specifically

12

The output measurement vector (i.e., the Z-vector) is then defined

The neural-network function ,&(e) for a specific control vector (Le., the hector)

and attenuation coefficient matrix (i.e., the C-matrix) is defined

13

2.2.2 Neural-Network Filter FunctionslPass-Through Functions

The filtedpass-through function fc uj,&) of the j-th-k-th argument uj,& is applied just

prior to (i.e., immediately to the left of) thej-th destination node of the k-th layer and

consequently defines the arriving signal at the j-th destination node of the k-th

layer. Specifically

where the argument u,,& is the summation of all the attenuated signals directed from

the active origin nodes of the k-th layer toward the j-th destination node of the k-th

layer, that is

The filtedpass-through function attenuates the uj,& argument in accordance with a

mathematical rule/function which is specified for each (j, k) tuple. In addition to the

No-Pass Function (Le., the Constant Function) and the Direct-Pass Function (Le., the

Linear Function), the commonly selected filter/pass-through functions are either of

the signoid type or of the pulse type (e.g., a radial function, a bell shaped function,

et cetera). If these functions are continuous and smooth, that is if they are

connected with continuous derivatives, they have the forms which are illustrated in

Figure 5. For this study, the Hyperbolic Tangent Function was selected to be the

signoid type function, whilst its first derivative was selected to be the pulse type

function. The motivation for this selection was to facilitate the analytic evaluation of

the partial derivatives required during the optimisation iteration process which is used

to update the neural-network parameters, and to provide function compatibility

between the signoid and radial type functions. In addition, this selection appears to

14

be suitable for the use of a regularisation method which uses partial derivatives of

the error metric to define the regularisation functional that is added to the

performance index during the neural-network parameter update process (References

11 through 18). These four types of filter/pass-through functions are described in the

following sub-sections.

2.2.2.1 Constant Function: the No-Pass Function

The Constant Function (see Figure 6) is also referred to as the No-Pass Function

because the output signal $,k is specified by the function constant G. and is

completely independent of the input signal u , . k . For a specific (j , k) tuple, the

Constant Function is

J. k

where

is the specifii constant.
'Oj. k

is the vertical translation constant.
''j, k

It is noted that the node defined by the (j, k) tuple can be effectively eliminated by

setting G. and yo. equal to zero. Gj, can be thought of as a bias signal in the

neural-network system.
J. k J*k

15

2.2.2.2 Linear Function: the Direct-Pass Function

The Linear Function (see Figure 6) is also referred to as the Direct-Pass Function

because the output signal 4,k can be made to be identically equal to the input signal

u,,k by appropriately specifying the values of Aoj, k , C 0 j . k ' h j , k ' and %j,k '
specifically by setting A,

specific (j, k) tuple, the Linear Function is

= 1, Gj,k = 0, u,. = 0, and yoj,k = 0. For a
j . k J * k

where

is the specified attenuation constant.
Oi. k

A

is a specified constant.
coj, k

is the horizontal translation constant.
' O j . k

is the vertical translation constant.
"j .k

It is noted that the node defined by this Linear Function can be made to degenerate

to the Constant Function be setting A,. = 0.
J , k

If two points 8 (ulj, k , y l j , k) and p2 (u2j, k , y2j, k) are known to be contained in the

mapping of the desired Linear Function, the constants Aoj,k and can be

readily obtained from
i. k

- - "j ,k " j . k
u - u

2j ,k Ij.k
Aoj ,k -

16

and

- - A (u - I C)
y 2 j , k - yo. Oj. k 2j .k Oi. k

c

I . k

2.2.2.3 Hyperbolic Tangent: the Threshold Function

The Hyperbolic Tangent Function (see Figure 7) is also referred to as the Threshold

Function because the output signal $,& has a constant value (e.g., zero) or is as

close as required to a horizontal asymptote for values of the input signal u,,k below

a threshold limit. For values of the input signal U j , k above this threshold limit, the

output signal $,k 'ramps" to another constant value or as close as required to

another horizontal asymptote. For a specific (j, k) tupie. the Hypebiic Tangent

Function is

where

is the specified horizontal scaling constant.
Aoj. k

is the specified attenuation constant.
' O j . k

is the horizontal translation constant.
' O j . k

is the vertical translation constant.
'0,. t

The horizontal scaling constant Aoj, can be readily determined from geometrical

considerations (see Figure 7). If it is desired to have the function pass through a

specific point P b+uo. ,) where Coj,k. b E (0, +-). and (J .k a G j . k + "j .k

17

a E (0, 1) are specified, and noting that the function passes through point

s(uo j ,k ' yo,,,>. then

1 l + a
Aoj.k = A E (0, +-)

Oj. k

2.2.2.4 First Derivative of the Hyperbolic Tangent: the Pulse Function

The First Derivative of the Hyperbolic Tangent function (see Figure 8) is also

referred to as the Pulse Function because its width can be made to be as narrow as

required by the appropriate selection of the horizontal scaling constant A,. . For a

specific (j, k) tuple, the First Derivative of the Hyperbolic Tangent Function defined in

the previous subsection is

J* k

where

is the specified horizontal scaling constant.
'0,. k

" j . k
is the specified attenuation constant.

is the horizontal translation constant.
uo;.k

is the vertical translation constant.
'0j.k

The horizontal scaling constant Aoj. can be readily determined from geometrical

considerations (see Figure 8). If it is desired to have the function pass through a

specific point P b+uo. a! A,. G. + Y o j , k) where Co . b E (0, +-). (J - k J. k J, k j. k

and c11 E (0, 1) are specified, and noting that the function passes through point

G(%. J.k ' Aoj,kcoj,& + '0j.k)' then

19

2.2.3 The Sliding Window of Data Acquisition

The purpose of the Closed-Loop Optimal Neural-Network Controller described herein

is to optimally control the aeromechanical behaviour of a rotorcraft over a period of

time. This behaviour history is the time process which is the "trajectory of interest".

For convenience and efficiency, each trajectory segment (Le., either the learning

trajectory or the controlled trajectory) is compartmentalised into contiguous time

intervals referred to as "duty cycles". These duty cycles are sequentially processed

until the completion and termination of the current trajectory segment. The various

tasks that are required to be processed during the current duty cycle are placed in a

priority queue, initiated as appropriate, executed, and completed as time permits.

The duration of the duty cycles is typically defined by a recurring physical event such

as the start of a rotor revolution (i.e., after II rotor revolutions) or after a fixed time

interval (i.e., after A?,, seconds). The acquisition and processing of the pertinent

data required by the controller (i.e., the current measurement Z - vector and the

current control 6 - vector) to determinehpdate the constants of the neural-network

plant model and/or to determine the optimal control &vector are essential duty cycle

tasks.

The "sliding window of data acquisition" as illustrated in Figure 9 is a convenient

means to describe the initiation and accomplishment of the data acquisition and data

processing tasks for the sequential duty cycles. The purpose of sliding window is to

provide a means to include previously acquired data with the latest acquired data

when determininuupdating the constants of the neural-network plant model whilst

culling out the older data. Data acquisition (Le., transmission of the current

measurement Z - vector and the current control 6 - vector to the first location in

the sliding window) is tasked during the first duty cycle after a specified delay count

(Le., after a specified number of duty cycles) from the beginning of each trajectory

20

segment . This specified delay Count is referred to as the 'data acquisition delay"

for the current trajectory segment. Subsequent data acquisition is tasked at a

specified duty cycle frequency (Le., after a specified integral number of duty cycles).

This specified duty cycle frequency is referred to as the 'data acquisition

frequency". It is consequently not necessary for data acquisition to Mxur during

each duty cycle atthough this is possible and is indeed frequently the case.

The sliding window of data acquisition is comprised of the sequentially acquired data

sets {Z, - vector and 6, - vector for 1 = 1, 2.3, 0 0 0 0 LMAX} where LMAX is

the current number of data sets in the sliding window. Whenever a new set of data

is acquired, the positions of the previously acquired data sets in the sliding window

are advanced by one (e.g., the Z ,- vector and 8,- vector become the Z2 - vector

and 02- vector, respectively; the Z2 - vectcr and 02- vec!c?r become the

Z - vector and 03- vector, respectively; and so on until the positions of all the

data sets in the sliding window have been advanced by one). The newly acquired

data set becomes the new 2 ,- vector and 8,- vector. If the earliest data set in the

window (i.e., the Z,,, - vector and 6- - vector) is advanced to a position

beyond the specified maximum sliding window size, it is eliminated from the sliding

window. This specified maximum sliding window size is referred to as the "window

length".

21

2.2.4 Optimal Update of the Neural-Network Model

There are two principal categories of optimisation procedures employed to optimally

determinehpdate the neural-network plant model. The first category deals with the

task to optimally select the constants of the neural-network plant model (i.e., the

"optimal constants selection process") and to eliminate and/or add neural-network

paths and/or nodes in this plant model. The second category deals with the tasking

of data acquisition, the retention and weighting of this data for the optimal constants

selection process, and the operation of the optimisation algorithm employed during

this optimal constants selection process.

The determinationhpdate of the constants of the neural-network plant model is

accomplished using the modern constrained optimisation method described in

References 2 through 8. This task is posed as a non-linear programming problem

for which a performance index is minimised subject to constraints. In this case, the

control vector is comprised of the attenuation coefficient elements C;.j.k of the

attenuation coefficient matrix (Le., the C-matrix) which are defined in Section 2.2.1.

The optirnisation process selects the values of Ci,j,k which minimise a performance

index based on the closeness of predicted measurement Z - vectors (Le., the

Z - vectors obtained using the neural-network plant model with the current values of

the attenuation coefficient elements C;, j ,k) to the "actual" measurement

Z - vectors (i.e., the Z - vectors obtained from the data sets in the sliding window).

Provision has been made to weight the data sets in the sliding window according to

position in the window as defined by the index I , for I = 1, 2, 3, 0 LMAX. The

optimal constants selection process is the solution to the following optimisation

problem.

Subject to:

where

w,,+ is the diagona! weighting coefficient matrix for the quadratic

difference term (i.e.. the ‘square” of the difference between the

predicted and the actual measurement 2 - vectors) which is an

ekment in the performance index JN2 .

wsWl is the weighting coefficient for the I-th data set of the sliding window.

zA, is the actual measurement 2 - vector from the Z-th data set of the

sliding window.

is the predicted measurement 2- vector from the I-th data set of

the sliding window;

ZN:
= f (e, c).

“1

23

Although no automatic scheme for the elimination and/or addition of neural-network

paths and/or nodes have been implemented as of this time, a general plan for such

an automatic scheme has been identified; specifically :

!f

where EC is a suitably selected small positive real number.

for a specific (i, j , k) tuple (Le., for a specific i-th origin andj-th destination in a

specific k-th layer), close the associated i, j , k path by setting Ci , j ,k = 0 and

removing it from the optimisation control vector. This action has the advantage of

reducing the dimension (i.e., the degrees-of-freedom) of the optimisation problem by

one for each specific (i , j . k) tuple for which one of these conditions occurs. The

reduction of dimension will hopefully enhance the efficiency of the optimisation

process.

v i E l k with the specific j-th destination in the specific k-th layer, eliminate the

associated node defined by the (j , k) tuple. This is accomplished by closing the

associated i, J. k paths to this node and all paths from this node as defined by the

(j, p, k + l) tuple v P E Jk+l . Set the associated Ci,j,k and Cj, p , values to

zero and remove them from the optimisation control vector. Removal of a node

reduces the dimension of the optimisation problem by the sum of the number of

i E l k and the number of p E J k + l .

!f

where rc is a suitably selected large positive real number.

for a significant number of i E with the specific q-th destination for 4 E Jk in

the specific k-th layer, the possibility exists that neural-network modelling

performance can be enhanced by the addition of one or two nodes adjacent to the

node defined by the (q, k) tuple.

Specifically, let

NIk = the number of paths from the origin nodes to the destination node

which is defined by the (q, k) tuple (i.e., the number of i E Ik) for

4 E Jk inthespecifick-th layer.

I lk- = { i I i E lower half of i E lk

where the median i E is ignored when NIk is odd

I Z: = { i t i E upper of i E 1,

where the median i E is ignored when NIk is odd

N; = thenumberof i E I; forwhich

N i = thenumberof i E 1; forwhich

25

then

If

where the Trunc (0) is the truncation function and a is a suitably selected

positive real number E [O.O, 0.51,

then add a node adjacent to and “above” (Le., before) the destination node which is

defined by the (9. k) tuple by advancing the j E Jk indices by one for j 2 4 and

adding the new node to the vacated (9, k) position. Paths to and from this new node

must be appropriately added by defining the associated ci, q, and cq, ,’. k + l values

for P E Jk+ I and 4 E Jk . This has the effect of increasing the dimension of the

optimisation problem by the sum of the numbers of i E I, and j E JA. for each

node added.

+ N, 2 Trunc (p N,J

where p is a suitably selected positive real number E [O.O. 0.51,

then add a node adjacent to and “below” (i.e., after) the destination node which is

defined by the (q, k) tuple by advancing the j E Jk indices by one for j 2 4 + 1

and adding the new node to the vacated (q+I, k) position. Paths to and from this

new node must be appropriately added by defining the associated ci,q+ I , , and

and q E J , . This has the effect of increasing

the dimension of the optimisation problem by the sum of the numbers of i E lk and

j E Jk for each node added.

values for P E Jk+
‘4+1. P. k + l

It is felt that more experience using this controller should be obtained before

attempting to define the details required for implementation of an automatic

procedure such as the one described above, to modi the initial "geometry" of the

neural-network plant model.

The tasking of data acquisition (Le., the definition of 'data acquisition delay" and

"data acquisition frequency"), the retention and weighting of this data for the optimal

constants selection process (Le., the definition of 'data window length" and the

values of wSw, the weighting coefficients for the I-th data sets of the sliding

window), and the operation of the optimisation algorithm employed during this

optimal constants selection process (e.g., the selection of the convergence tolerance

values and the maximum number of iterations in each optimisation solution process)

is not amenable to th.e use of automated optimisation methods such as those

empioyed during the optimal constants selection process. Atthough this problem can

be posed as an integer programming problem. attempts at its solution at this time are

accomplished by manually selecting the governing parameters based on the

experience of operating the controller.

27

2.2.5 Control Optimisation

One of the important tasks which can be requested during a duty cycle is the optimal

selection of the control 8 - vector (i.e., the "optimal control selection process") to

be used during the next duty cycle. There are two principal categories of

optimisation procedures employed for this optimal control selection process. The

first category deals with the optimisation of the elements of the control 8 - vector,

subject to constraints, which minimises a metric of selected elements of the

measurement Z - vector. Although this optimal control selection process utilises the

most recently determined neural-network plant model (Le., neural-network plant

model defined by the most recently determined neural-network plant model geometry

and the associated attenuation coefficient elements ci, ,, as described in Section

2.2.4) to define the required elements of the measurement Z - vector, the sliding

window of data acquisition (see Section 2.2.3) is not employed directly in this

process; it is assumed that the plant model is already defined. The second category

deals with the operation of the optimisation algorithm employed during this optimal

control selection process.

As in the case of the optimal constants selection process described in Section 2.2.4,

the selection of the optimal control 8 - vector is accomplished using the modern

constrained optimisation method described in References 2 through 8. This task is

posed as a non-linear programming problem for which a performance index is

minimised subject to constraints. In this case, the control vector is comprised of

selected elements of the control 8- vector (see Section 2.2.1). The optimisation

process selects the values of these elements of the control 8 - vector which

minimise a performance index defined as a metric of selected elements of the

28

measurement Z - vector. The optimal control selection process is the solution to the

following optimisation problem.

Minimise
e,€ e

Subject to:

Jcv = zEv WCV zcv for P E I'

for p E Io

for P E I ,

for P E I,

for p E le

where

w,, is the diagonal weighting coefficient matrix for the quadratic term

(i.e., the %quare" of the predicted Z - vector) which is an element in

the performance index Jcv .

zcv is the predicted measurement Z- vector evaluated during the

control 6 - vector optimisatin/update process. z,, = fN2 (e, c).

29

As in the case of the optimal constants selection process described in Section 2.2.4,

the operation of the optimisation algorithm employed during this optimal control

selection process (e.g., the selection of the convergence tolerance values and the

maximum number of iterations in each optimisation solution process) and the

frequency of tasking this process can be optimised. It is emphasised that in the real

time trajectory environment, tasking the optimal control selection process during

each duty cycle and/or requiring convergence of the optimisation process to within a

small tolerance is not necessarily the “optimal” or “best” way to operate the

optimisation algorithm. The frequency of tasking this optimal control selection

process and the associated required amount of computation and processing (e.g.,

requiring convergence to within a small tolerance) within the duty cycles in which this

process is tasked is indeed relevant to the overall trajectory optimisation and is

amenable to optimisation. Although this problem can be posed as an integer

programming problem, attempts at its solution at this time are accomplished by

manually selecting the governing parameters based on the experience of operating

the controller.

30

2.3 The Optimal Constants and Optimal Control Selection Processes as
Non-linear Programming Problems

The problems which are addressed in both the optimal constants selection

process described in Section 2.2.4 and the optimal control selection process

described in Section 2.2.5 are special cases of the general Non-linear Programming

(NLP) Problem. The selection processes for both of these cases seek the optimal

control vector which minimises a performance index subject to constraints on the

control vector. The performance index is in general non-linear. Although the

constraints on the control vector are constant limiting values for the optimal

constants selection process as of the date of this report, they can also be non-linear

if required. Provision has been made for quadratic constraints (e.g., harmonic

magnitude constraints) on the control vector for the optimal control selection process

to be applied as required. These selection processes thus require an optimisation

technique which treats a more difficult non-linear problem than the relatively simple

quadratic programming problem.

The general non-linear programming (NLP) problem is defined in Section 2.3.1,

and the method of its solution which is employed in this research is described

in Section 2.3.2.

31

2.3.1 The General Non-linear Programming Problem

The general non-linear programming (NLP) problem can be expressed in the form

Min imise e,+ e

Subject to:

J = g[z(e)] for p E I ,

where

g[Z(e)] is the scalar performance index which is a function of the plant

output measurement vector (Le., the Z - vector). In general, this

function can be non-linear.

is the set of all P 3 OP E 8.

is the predicted measurement Z - vector evaluated during the

optimisation process. z = fN2 (e,c).

is the control vector 8 - vector.

is the equality constraint vector function which in general can be

dependent on the 8 - vector.

is the inequality constraint vector function which in general can be

dependent on the 8 - vector.

32

2.32 A Solution to the General Non-linear Programming Problem

Investigation of various methods to solve the General Non-linear Programming (NLP)

problem led to the selection (Reference 1) of the highly successful modem methods

of Schittkowski. Powell, Stoer, and Gill et al (References 2 through 8). These

general NLP solution methods were coded in FORTRAN and are readily available as

IMSL library routines (specifically, IMSL main driver routines DNCONF and

DNCONG described in Reference 9). These methods solve the general NLP

problem by solving a sequence of related quadratic programming sub-problems

(QPSs) until either convergence is obtained or the specified maximum number of

iterations (Le., the specified maximum number of quadratic programming problems to

be solved) is reached. One important advantage of this technique is that quadratic

programming probiems can be soived efficiently. A vev irnpo~tan? properZy of

quadratic programming formulations is that if the quadratic coefficient matrix in the

performance index is positive definite, the problem has a unique solution which is, of

course, the global solution. These methods worked quite well in the research

described in Reference 1, and have proven to be quite robust and efficient in the

research described herein.

The general quadratic programming problem (QPP) can be expressed in the form

Minimise J = g(e) = eTGe + c;e for p E I ,
e,+ e

Subject to:

33

I

where

is the coefficient matrix in the linear term of the linear equality

constraint function @(e).
A,

is the coefficient matrix in the linear term of the linear inequality

constraint function W(e).
A,

is the constant vector term of the linear equality constraint function 4
N e) .

is the constant vector term of the linear inequality constraint function 4
w(@.

CL is the coefficient matrix in the linear term of the quadratic

performance index function g(8) .

ca is the coefficient matrix in the quadratic term of the quadratic

performance index function g(e) .

g(8) is the scalar performance index which in this case is a quadratic

function of the control vector 8 - vector.

is the set of all P 3 OP E 8. Io

is the right hand side null or zero vector of the linear equality

constraint function $(e).
04

34

is the right hand side null or zero vector of the linear inequality

constraint function W(e).

is the control vector 8 - vector.

is the equality constraint vector function which in this case is a linear

function of the control vector 8 - vector.

is the inequality constraint vector function which in this case is a

linear function of the control vector 8 - vector.

The successive quadratic programming sub-problems (QPSs) used to solve the

gexewl mn-linear prwramming (NLP) problem are formulated by using a quadratic

approximation of the general NLP performance index function g(8) and linear

approximations of the general NLP equality atxi inequality constraint functions #(e)
and v(e). These approximations are obtained by simple replacement of the g(e),
@(e), and W(0) functions with their appropriately truncated matrix Taylor Series

expansions, where if the Hessian of g(8) (Le., =) is not positive definite, the

algorithm adjusts it so that it is so that global optimality of the QPS is assured.

Specifically, at each iteration step the quadratic programming sub-probiem (QPS) to

be solved is:

de2

T

Minimise J = z[1 e - eo] [e- eo] + cL [e - eo] for P E
e,€ 8

Subject to:

35

where

and

and

is theset of all P 3 OP E 8 le

is the right hand side null or zero vector of the linear equality

constraint function @(e).
04

is the right hand side null or zero vector of the linear inequality

constraint function W(e).
o!Y

e is the control vector 8 - vector.

00 is the value of the control vector 8 - vector at the start of each

quadratic programming sub-problem (QPS).

If optimality as measured by satisfying the Kuhn-Tucker optimality criterion at the

completion of an iteration step and if the specified maximum number of iterations has

not been reached, the Hessian is updated (References 3 and 4). eo is set equal to

the last value of 8, and a new iteration is attempted.

36

2.4 Traje~dory Data

The time history of the rotorcraft behaviour of interest, that is the "trajjory of

intemf (see Section 2.2.3), is the source of the data that is acquired and/or defined

during the specified duty cycles. Provisions in the Optimal Neural-Network Controller

(0°C) System (Le., the code which was developed to implement the Closed-Loop

Neural-Network Controller described herein) were made to optionally accept one of

four forms of this data. These optional data forms are: 1) On-Line Trajectory Test

Data (described in Section 2.4.1). 2) Off-Line Trajectory Data Tables (described in

Section 2.4.2)' 3) Analytic Trajectory Synthesis (described is Section 2.4.3). and

4) User Supplied Trajectory Model (described in Section 2.4.4).

2.4.1 On-Line Trajectory Data

A positionlslot in the Optimal Neural-Network Controller (0°C) System was

provided to accept data sets in real time from an ongoins test. To activate this

option, the DSTATE subroutine must be specifically designed and then coded to

satisfy the requirements of testat hand. In general, this DSTATE subroutine will

include the basic features of the Off-tine Trajectory Data Tables TSTATE subroutine

described in Section 2.4.2. however it will additionally need to be formatted to accept

the data sets transmitted from the ongoing test. This DSTATE routine will also need

to be compatible with the 0°C System which reads one data set at a time

commensurate with real time duty cycle methodology.

37

2.4.2 Off-Line Trajectory Data Tables

The TSTATE subroutine in the Optimal Neural-Network Controller (0°C) System

was provided to read off-line trajectory data sets from input tables one data set at a

time commensurate with real time duty cycle methodology.

2.4.3 Analytic Trajectory Synthesis

The ASTATE subroutine in the Optimal Neural-Network Controller (0°C) System

was provided to analytically synthesise off-line trajectory data sets one data set at a

time commensurate with real time duty cycle methodology. Whenever trajectory

data is to be acquired, the analytic vector synthesis function E(t) is evaluated.

Specifically:

let

then

where t is the current time.

z,(?) is the synthesised control Z- vector at time t with dimension

(N x 1).

os(?) is the synthesised control 8- vector at time t with dimension

(M X 1).

I

C(t) is the synthesised combined trajectory data vector with dimension

([M + N] X 1).

Each element gi(t) of g(t) is defined by

gi(t) = [A. + B3+han

+ [c3i + ~ . ~ E ~ " (J S E E D ~ ~)] 1 Hi(?)

v i E [I, (M+N)]

where 4.. C3i, and 4. areinput constants..
1 1

Hi(t) is the composite synthesis function for the i-th element of 4< t) .

SEED,. and JSEER, are input seeds for the VAX FORTRAN uniformly

distributed random number generator function RAN (0) for the

i-th element of c(t) . Although there are no restrictions on the

value of this seed other than it is an INTEGER-4 variable, the

best results are obtained when it is initially input as a large odd

integer.

- 1

RAN(0) is the VAX FORTRAN uniformly distributed random number

generator function described in Appendix D of Reference 19.

RAN(.) E [o.o, 1.01

Uran(0) is the uniformly distributed random number generator function

3 uran(.) E [-LO, 1.01. Uran(.) isdefined by

uran(0) = RAN(.) - 1.0

39

It is noted that the first term

defining the synthesised combined trajectory data vector {(f) represents

a bias in the composite synthesis function whilst the second term

in the equation

Hi(?)
[c3, + D,.Uran 1 in this equation represents the statistical

uncertainty in this function.

The composite synthesis function Hi(f) for the i-th element of ((f) is the

summation of up to seven individual modelling functions hm(rm) where

rn = 1, 2. 3, MMAX. Specifically:

MMAX - .

for MMAX E [I , 71

m = l

Eight different individual modelling functions h,(%) are currently provided in the

0°C System. These functions are described in the following sub-sections (i.e.,

Sections 2.4.3.1 through 2.4.3.8). With the exception of the Uniformly Distributed

Random Function described in Section 2.4.3.8, the individual modelling functions

hrn(rm) can include a random bias and/or a statistical uncertainty. Specifically:

h m (~) = [A, m + B2 m Uran(ISEED,,,,)]

b' rn E [l, MMAX]

where A,,, 4 , C, , and D, are input constants..
rn m m

gm('z;n) is the core deterministic modelling function of the rn-th specified

individual modelling function h,,, Z;n . 0

40

and JSEED2m are input seeds for the VAX FORTRAN

uniformly distributed random number generator function

RAN (0) for the m -th specified individual modelling function

hm(?;n). Although there are no restrictions on the value of this

seed other than it is an INTEGER-4 variable, the best results are

obtained when it is initially input as a large odd integer.

rm is the periodic time argument for the rn-th specified individual

modelling function hm().

It is noted that the first term [A. + & m Urm(ISEED2m)] in the equation

defining the m-th specified individual modelling function h,,, '2;n represents a bias

in this function whilst the second term [cm + 4, Urm(JSEED2,)1 g,,,(5)
in this equation represents the statistical uncertainty in this function.

0
"'J .--\ - f

Periodicity with phase shift relative to an epoch time for the core deterministic

modelling function gm (?;n) of the m -th specified individual modelling function

hm(Zm) is accomplished by specifying the period Tm time, phase shift f4m time,

and the epoch fo, time (see Figures 10 and 11). Specifically, the periodic time

argument Zm for gm(?;n) and hm(?;n) is

zm = DMOD([t - tom - 4, T ~)
where DMOD(0) is the VAWVMS FORTRAN Intrinsic Remainder Function

described in Group 3 of Appendix B of this document and in

Appendix D of Reference 19.

t is the current time.

41

is the phase shift time for the rn-th specified individual modelling

function hm('z;n).
'@rn

is the reference/epoch time for the rn-th specified individual

modelling function hm(Z;n).
'om

Trn is the period time for the rn-th specified individual modelling

function hm().

2.4.3.1 Linear/Ramp Function

The Linear/Ramp Function (see Figure 12) is expressed by

gm(%) y - y o = a zm + c

where

a is the specified attenuation constant (i.e., the slope).

C is a specified constant (i.e., the intercept).

Y is the value of the rn-th core deterministic modelling function

gm(2;") Plus Y O .

is the vertical translation constant. YO

7 , is the periodic time argument for the rn-th core deterministic

modelling function gm

42

If two points I: (rm,, (rm2, y2) are known to be contained in the

mapping of the desired LinearIRamp Function, the constants a and c can be

readily obtained from

) and

and

2.4.3.2 Serpentine Curve Function

The Serpentine Curve Function (see Figure 13) is expressed by

where

a is the specified horizontal scaling constant.

b is the specified amplitude constant.

Y is the value of the m-th core deterministic modelling function

is the vertical translation constant. yo

is the periodic time argument for the rn-th core deterministic

modelling function gm().
%I

43

Scaling of this Serpentine Curve Function is readily accomplished by noting the

obtains its maximum and minimum values geometrical property that gm

f b / 2 when

d
dZm
-[gm(G)] = 0 whichoccurswhen Zm = + a

2.4.3.3 Witch of Agnesi Function

The Witch of Agnesi Function (see Figure 14) is expressed by

where

a

b

Y

is the specified amplitude constant.

is a derived horizontal scaling constant.

is the value of the rn-th core deterministic modelling function

gm(%) plus Y O -

is the vertical translation constant.

is the periodic time argument for the rn-th core deterministic

modelling function gm(%).

Scaling of this Witch of Agnesi Function is readily accomplished by noting the

geometrical properties that gm obtains its maximum value when

44

d --[.()] = o which occurs when zm = o
G r n

and that gm(a) + o as zm + +-

and byappropriatelyspeclfylngascalingcoefficient C 3 C E (0, 1.0) sothat

y - y o = ca when Zm = + a

The derived horizontal scaling constant b then becomes

2.4.3.4 Inverted Witch of Agnesi Function

The Inverted Witch of Agnesi Function (see Figure 15) is expressed by

where

a is the specified amplitude constant.

b is a derived horizontal scaling constant.

Y is the value of the m-th core deterministic modelling function

gm(G) plus Y O -

is the vertical translation constant. YO

Zm is the periodic time argument for the m-th core deterministic

modelling function gm(a).

45

Scaling of this Inverted Witch of Agnesi Function is readily accomplished by noting

the geometrical properties that gm(*z;n) obtains its minimum value 0 when

d
-[gm()] = 0 which occurs when rm = 0

and that g,,,(rm) + a as zm + +=

and by appropriately specifying a scaling coefficient c 3 c E (0, 1.0) so that

y - y o = ca when Zm = + a

The derived horizontal scaling constant b then becomes

2.4.3.5 Enveloped Sinusoidal Function

The Enveloped Sinusoidal Function (see Figure 16) is expressed by

is the specified attenuation constant of the above equation.

is the fundamental of primary frequency of the sinusoidal factor of

the above equation.

n is harmonic frequency number of the sinusoidal factor of the

above equation.

46

nf

nm

a

w

Y

YO

is the net frequency (i.e., the harmonic frequency number n
times the fundamental of primary frequency f) of the sinusoidal

factor of the above equation.

is 2 It times the net frequency n f of the sinusoidal factor of the

above equation.

is a derived horizontal scaling constant for the exponential factor

of the above equation.

is a phase time constant of the sinusoidal factor of the above

equation.

is a derived horizontal shift constant for the exponential factor of

me above equation.

is 21t times the fundamental of primary frequency f of the

sinusoidal factor of the above equation.

is the value of the rn-th core deterministic modelling function

gm(T n) PIUS Yo.

is the vertical translation constant.

is the periodic time argument for the rn-th core deterministic

modelling function gm().

Scaling of this Enveloped Sinusoidal Function can be accomplished by directly

specifying values of c, II. a, $, w , and 0 or from consideration of

geometrical properties. The exponential envelope factor c f ipe a Zm
of the above equation can be thought of as the coefficient of the oscillatory factor

1 (- 41
Zm - @)] of this equation. The overall rate of convergence or

47

divergence can readily be defined by specifying a required value of the exponential

envelope factor at a selected value Z;n* of Zm ; specifically

specify B 3 C Exp, [a(z,* - v)] for the selected value T;n*

Noting that CExp, a Zm - W)] z C at Zm = w [(

then

Note that divergence of the exponential envelope factor occurs when B > c, the

exponential envelope factor is invariant when B E c, and convergence of the

exponential envelope factor occurs when B < c.

Either harmonic frequency number n together with 2 1t times the fundamental

frequency f (i.e.. 0) of the of the sinusoidal factor can be directly specified, or

the required value of n 0 can be derived from a specified net period P;

specifically

21t nu = - P

2.4.3.6 Hyperbolic Tangent: the Threshold Function

The Hyperbolic Tangent Threshold Function (see Figure 17) is expressed by

gm(G) = y - yo = C T a n h (A G)

48

~~

where

A is a derived horizontal scaling constant. A E (0.0, + w)

C isthespeciffedattenuationconstant. C E (0.0, +w)

Y is the value of the rn-th core deterministic modelling function

gm(G) PIUS YO-

YO is the vertical translation constant.

Zm is the periodic time argument for the rn-th core deterministic

modelling function gm(G) .

Scaling o! tfiis Hyperbolic Tangent Threshold Function !?=(?;.) is readily

accomplished by noting the geometrical properly that

and by defining a required value C%C of this function for a specified value

b E (0.0, +w) of Zm. Specifically

for a E (0.0, 1.0)

then

l + a
2b

2.4.3.7 First Derivative of the Hyperbolic Tangent: the Pulse Function

The First Derivative of the Hyperbolic Tangent Pulse Function (see Figure 18) is

expressed by

49

g m (%) = y - yo = -{CTanh(Arm)} d = ACSech2(AZm) * rm

where

A is a derived horizontal scaling constant. A E (0.0, + -)

c istheattenuationconstant. c E (0.0, +-)

Y is the value of the rn-th core deterministic modelling function

gm(rm) plus YO*

is the vertical translation constant. YO

r m is the periodic time argument for the rn-th core deterministic

modelling function gm(%).

Scaling of the First Derivative of the Hyperbolic Tangent Pulse Function gm

readily accomplished by noting the geometrical properties that gm(%) obtains its

maximum value AC when

d
--[gm(G)] = 0 which occurs when Zm = 0

and that gm(rm) -, o as rm + f-

and by defining a required value aAC of this function for a specified value

b E (0.0, +-) of Zm . Specifically

aAC for a E (0.0, 1.0)
Z, = b

Y - YO = g m (r m) I

then

50

2.4.3.8 Uniformly Distributed Random Function

The Uniformly Distributed Random Function (see Figure 19) is expressed by

hm(a) = y - yo = [Al m + I?, m Uran(ISEED, m)]

where A and B areinputconstants.
Im 1,

hm(a) is the m-th specified individual modelling

rather than a core deterministic modelling

as those defined in the above sub-paragraphs.

is the input seed for the VAX FORTRAN uniformly distributed

random number generator function RAN(.) for this m-th

specified individual modelling function h, . Although there

are no restrictions on the value of this seed other than it is an

INTEGERV variable, the best results are obtained when it is

initially input as a large odd integer.

0

zm is the periodic time argument for the rn-th specified individual

modelling function hm().

2.4.4 User Supplied Trajectory Yodel

A positiodslot in the Optimal Neural-Network Controller (0°C) System was

provided to allow the user to specifically define the trajectory data sets by designing

and coding the USTATE subroutine which will satisfy the user's requirements. This

USTATE routine will, however, need to be compatible with the 0°C System which

reads one data set at a time commensurate with real time duty cycle methodology.

51

2.5 The Stand-Alone Optimal Neural-Network Controller System

The Optimal Neural-Network Controller (0°C) System was designed and

developed to enable and facilitate accomplishment of the research described herein.

The 0°C System is the means to execute the concepts described in the preceding

sections. This system, which was originally coded in FORTRAN for a Digital

Equipment Corporation (DEC) VAWVMS system, currently residesloperates on a

Compaq-DEC Alpha 4100 Model Processor.

The general hierarchy showing the principal routines of the 0°C System is

illustrated in Figure 20. The Input and other important parameters of this system are

defined in Appendix A. The principal routines of the 0°C System are described in

Appendix B and their listings are presented in Appendix C.

52

During the course of development and debug of the Optimal Neural-Network

Controller (0°C) System, several neural-network models which differed in the

number of layers, number of nodes per specific layer, and the values of the

constants in the associated specific neuralnetwork filter functions were examined.

Additionally, trajectory data was defined from both tabular test data and analytic

trajectory synthesis. Variations in data acquisition frequency and window length

for the sliding window of data acquisition were also considered.

Two principal categories of cases were selected to be used to study this dynamic

+tima! neural-network controller process in detail. Simplified static test data from a

40 x 80 Foot Wind Tunnel test performed for the BO-105 Individual Blade Control

(IBC) test programme (Reference 20) was used to define the neural-network plant

model constants in the first category of cases. A dynamic state propagation based

on an analytically synthesised trajectory (Le., a synthesised time history of

the control @-vector and the measurement Z-vector) was used to define the

neural-network plant model constants from which the control 8-vector was

optimised in the second category of cases.

The data for the first case (Reference 20) consisted of a table of values of the scalar

vibration metric at 30 degree increments of the "two-per-rev" phase angle starting at

0 degrees and ending at 360 degrees (Le., at Oo, 30'. 60'. * * a , 360"). A

1 - 12 - 4 - 1 (0) was initially selected to

define a neural-network plant model which would represent this relationship.

Threshold functions (Le., Hyperbolic Tangents) were selected for the filter functions

at the destination nodes of the first and second neural-network layers, whilst a

1 - 12 - 4 - 1
neural-network function f

N2

53

direct-pass function (Le., a linear function) was selected for the output node (Le., the

destination node of the third neural-network layer). When convergence of the

optimal constants selection process (see Section 2.2.4) for this 1 - 12 - 4 - 1

neural-network model was not obtained, additional destination nodes were added to

the first and second neural-network layers. After several nodal schemes were tried,

a 1 - 14 - 5 - 1 neural-network function f (0) was finally selected (see

Figure 21) for the plant model. The motivation for this geometry was to provide filter

functions at the ends and between the input tabular "two-per-rev" phase angles

(i.e., at -15". 15". 45". , 375') at the destination nodes of the first layer. An

additional destination node for the second layer was provided to handle the

additional signals resulting from the increased destination nodes of the first layer.

Convergence of the optimal constants selection process for this case was slow and

not good. It appears as if the values of the vibration metric computed from the

solution neural-network plant model approach either the upper or the lower table

values, and that convergence scatters about multiple solutions to this optimal

constants selection process. This is due to the fact that the optimal constants

selection process as defined in Section 2.2.4 is in actuality an ill-posed problem with

multiple solutions. An abbreviated listing of this first case is presented in

Appendix D.

1-14 - 5 - 1

N2

The data for the second case was generated using a synthesised trajectory. A

(3 X 1) control @-vector and a (4 X 1) measurement Z-vector were assumed.

Several neural-network geometrical structures were considered before selecting the

3 - 8 - 5 - 4 neural-network function f (0) (see Figure 22) for the plant
N2

model. Convergence of the optimal constants selection process for this case was

also slow and not too good. It appears as if the values of the measurement Z-vector

computed from the solution neural-network plant model approach either the upper or

3-8- 5 - 4

54

the lower synthesised values, and that convergence scatters about multiple solutions

to this optimal constants selection process. As in the first case this is due to the fact

that the optimal constants selection process as defined in Section 2.2.4 is in actuality

an ill-posed problem with multiple solutions. An abbreviated listing of this first case is

presented in Appendix E.

Although the 0°C System operated as planned and designed, and in particular,

the optimisation algorithm proved to be quite robust and reliable for this application,

convergence of the optimal constants selection process was slow and not too good.

This is certainly not catastrophic however. The research of A. J. Meade, Jr. et al

(References 11 through 18) points to a solution to this problem; specifically, addition

of a reguiarising functional to the perfr>mi,ee index o! the optimal constants

selection process. In additiin, it is noted and emphasised that even though the

optimal constants selection process is not fully converged, the optimal control

selection process (see Section 2.2.5) can still provide a control &vector solution

which is better than that obtained by conventional methods. This will occur when the

solution neural-network plant model is a better representation of the actual plant than.

the conventional model which is usually linear. Indeed as was pointed out at the end

of Section 2.2.4, the operation of the optimisation algorithm itself (Le., the selection

of the convergence tolerance values and the maximum number of iterations in each

optimisation process) can be optimised in the context of the dynamic data

gathering - control optimisation process. It is emphasised that it is not necessarily

necessary to converge fully to a solution for the neural-network plant model

constants in order to make this procedure attractive.

"NZ

55

3.0 CONCLUSIONS and RECOMMENDATIONS

The Optimal Neural-Network Controller (0°C) System which was developed as

part of this research, operated as planned and designed. Although the sliding

window of data acquisition and the control &vector optimisation worked well, the

update of the neural-network plant model by means of the optimal constants

selection process was in general, slow to converge and/or converged to multiple

solutions for the neural-network constants. This is due to the fact that the optimal

constants selection process as defined in Section 2.2.4 is in actuality an ill-posed

problem with multiple solutions. Fortunately as noted in Section 2.6, this is not

necessarily catastrophic since the primary objective of this process is to determine a

nearly optimal control &vector regardless of the state of refinement of the plant

model which is merely a means to that end.

In addition to the general need to examine a greater diversity of rotorcraft cases and

to experiment with the types of the neural-network filter functions and the values of

their associated constants, three principal areas of improvement and development of

the optimal constants selection process have been identified; these are:

1. Implement a regularisation method in the optimal constants selection

process such as that developed by A. J. Meade, Jr. et al (References 11

through 18) which adds a regularisation functional A
performance index JN2 of this process (see Section 2.2.4). This

regularised performance index J is R

where

a is a specified weightingkmoothing constant; a > 0.

is the weighting coefficient for the I-th data set of the

sliding window.

A candidate regularisation functional was identified. This functional is a

metric of the first partial derivatives with respect to C; specifically

where the w, are specified weighting constants; wRi, j . > 0.
i.j, k

The motivation behind the selection of a first partial derivative metric as the

functional to be adjoined to the performance index is simply that the

process of driving the first partial derivatives to zero with the optimisation

algorithm can act as a powerful smoothing agent for the neural-network

optimal constants selection process. This latter property arises from the

definition of a limit. Specifically, as the solution c* to the optimal

constants selection process is approached, at m e point there will exist a

6-neighbourhood N8(C') about C* 3 given an & > 0, whenever

C E N6(C*)

57

which simply means that the tendency of the neural-network plant model to

deviate from the actual plant between evaluations of the neural-network

constants will be small near the evaluation points. It is noted that the higher

partial derivatives of the filter functions defined in Sections 2.2.2.1 through

2.2.2.4 are simple and readily evaluated.

2. Implement an automatic nodal additioddeletion scheme in the optimal

constants selection process such as that described in Section 2.2.4.

3. Develop and implement concepts to automatically adjust the constants in

the neural-network filter functions to provide better and more compatible

scaling of these functions for the input trajectoty data.

58

4.0 REFERENCES
. . 1. J. A. Leyland, uAMgher Ha- C0nWI.w to Q&mtse Rotorcraft

-, NASA Technical Memorandum 1 10390, March 1996

2. P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, 'v
As- of Nom-, in Computational Mathematical

Programming, (died by K. Schittkowski), NATO AS1 Series, 15, Springer-Verlag,
Berlin, Germany, 1985

3. M. J. D. Powell, "A F- for 0-
-, in NumerkalAnalysis Pmcmdings, Dundee 1977

4. M. J. D. Powell, 'A Fas t Alaorithm for No n-linearlv Cons trained Obtimisation
Calculations'. in Lecture Notes in Economics and Mathematics. 630, Springer-
Verlag, Berlin, Germany, pp 144-157, 1978

5. K. Schiiowski, 'Non-linear P r m m i n a Cod= ', in Lecture Notes in Ecimomics
and Mathematics, 183, Springer-Veriag, Berlin. Germany, 1980

ratic Proaram ming
M n., in Mathematik

6. K. Schittkowski, 'On the Converaence of a Seaue ntial Quad
ethod with an Auamented Lagranw . n Line Search Functio

Operationsforschung und &Wk. Se# Optimiration, 4. pp 197-21 6, 1983

7. K..Schittkowski, 'm: A FORTRAN S- C-
m a m m ina Problems'. (edited by Clyde L. Monna), in Annals of Operations
Research. 5, pp485-500, 1986

8. J. Stow. 'm for S&ng Non-
r Problem', in conqputaticmal Mathematical Programming, (Edited by K.

schiowski). NATO ASSeries. 15, Springer-Verlag, Min,Germany, 1985

9. "FORTRAN Subroutines for -. Version 1.1. Voluu&Y,
IMSL MAMIBRARY User's Manual, MALB-USM-UNBND-EN8901-1.1, January
1989

10. A. J. D. Bateman. D. G. Ward, R. L. Banon. and M. S. Whalley. "hhdMW&
S v s m for m. Barron Associates, Inc., Charlottesville VA,

Technical Report 194 FTFt, September 1998

11. A. J. Meade. Jr.. Seminar entitled "1
-, NASA-Ames Research Centre (Code AM), 28 June
1999

12. A. J. Meade, Jr.. and B. A. Zeldin, "-re Successful
Feedfnmacrl A r t l f l c a f l a l Net-na of MechanicalSvstems".

13. A. N. Tikhonw, A. V. Goncharsky. V. V. Stepanov, and A. G. Y a w , 'Numerical
for -&&m$, Mathematics and Its Applications,

14. 6. A. Zeldin. and A. J. Meade, Jr., "q
in Slmulatlon of P-, in A I M Journal. Vol. 35, No. 11,

. .

. . .

. . .

. .

. . . .
. . .

in M a t i ? e m a ~ l ~ e r ~ f i n g , Vol. 27, No. 5. pp. 61-74, 1998

Vo/ume 326, Kluwer Academic Publishers, The Netherlands, August 1995

. .
pp. 1787-1790, 1997

15. A. J. Meade , Jr., and A. A. Femandez, 'S(&&On of i
bv F- Ne-, in Mathematical Computer Mochlling,

16. A. J. Meade, Jr.. and B. A. Zeldin, on Prooerties of Lnr;al Basas
fro-ork T r a n s f e r , in Mathematical Computer

Vd. 20, No. 9. pp. 19-44, 1994
. .

Modeling, Vd. 28, No. 9, pp. 43-62. 1998

t

59

17. A. J. Meade, Jr., M. Kokkolaras, and 6. A. Zeldin, "Seauent ial Fmct i on
n for the Solut ion of Diffe rential Fauatio ns", in Communications in

18. A. J. Meade, Jr., and R. Moreno, "mecurrent Art ificial Neura I Netwo rk Model o f
ion w ithout Tra ing", in Smart Engineering Systems Design, Vol. 1,

re Version: V49 ", VAX/VMS Manual 19. ' p r o a r m a in VAX FORTRAN. Softwa
No AA-D034D-T€, Digital Equipment Corporation (DEC), Maynard, Mass,
September 1984

20. Sesi Kottapalli, Notes from the Individual Rlade Co ntrol IIRCI Tes t
p r o a r m , Nov 1998

Numerical Methods in Engineering, Vol. 13, pp. 977-986, 1997

pp. 135-1 48. 1998
. .

60

L

c
0
u)
Q

m
.)lr

Y

ii
3
CI
0

8

N -
c
0
0
Q)

H

CI

-
8

0
0

8
3
CI
0

I

a

B

d

c
0 m
u)

b c
a? m
I

(P
0 .- II

& r
0
a?
E L e
t

'p
a?
0
I 111

L
Y
i

I

2
a? c
8
r

61

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

L

1 I
I

I
I v)

!?

111- 1111111 t

I
I
I
I
I
I
I

=I

I
I
I
I
I
I
I
I

-
0

51 0

L
3
0
>
(P c
Q)

.I

a
I

Q
0

62

I-
I
I
I
I
I-

63

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

64

8
n
Y
00
W

w

2%
8
n
Y
22

n
M
Y

8
n
Y

".irk!

W
C
Q

'CI E
0
'p
0
C m

m

65

*2
+

'-2
oi
3
I
Y

Y

\
\

66

I
I

Y s

3

67

Y z?

3

E
0
0
c,

I

mu
A

e

e

e

e

e

E
0
0
c,

8

a -- N

0

0

0

0

0

S

rc
0
3
0
'EJ c
i-
m
C s
v)
.-
oi

69

n
bE

0

1
0

70

n
0

71

\
0

I

I *
nt

I J

73

E

I

111 *

0

74

I

0

75

I I
/

t>

Q
V

E *-
I
*o
I

111 *

E

*

\

t - e
I1

EL

_I \ \

- / - *
d ,' I U

/ t r g -

76

77

E
,k*

I

II *
I
3\
111

0

E
0
0
E

LL
E aa m
E

0

0 P

N
CI

a
c,

a- -
i!i z
aa c
0
aa >
a >

c,
rc

-
c,

m

ti n
E
ii
ad

e!

c,

P

3 m
LL
m

78

._.
E
6
W
W
(I) -

E
%P
i

-0
E

I

111
Ft

‘c1

c
W -- E
;Et

. . . ~ - . _ _ , - -_. I _ -..-._ . . I

E
-4

0

79

r
I
I
I
I
I
I
I
I
I
I
I
I

I
I
Id
If

I

r------- I I
I I

G

cn a

0
(u

111
I

t

T f

81

82

a

Appendix A

Principal Parameters
in the

Table of Contents

P a a e l t e m
Principal Parameters in the 0 P N TIM N Code

i Title page for: Principal Parameters in the OPTIMNN Code
iii Table of Contents
V Parameter List

1

2

6

9

11
14
16
21

21
21
22
23
24

24
24
25
26
27

27
27
28
29

Tile Page for:

Input Group 1:

Input Group 2:

Input Group 3:
Input Group 4:
Input Group 5:
Input Group 6:
Input Group 7:

Input Group 8:

Input Group 9:

INPUT Parameters to the OPTIMNN Code; via
Namelist CDATA, PARAMETER Statements,
and Namelist DDATA
Dimensions of the Principal Arrays of the
OPTIMNN System
Overall Trajectory (Excluding Learning and
Control Trajectories) Propagation Parameters
Learning Trajectory Propagation Parameters
Controlled Trajectory Propagation Parameters
Neural Network Parameters
Analytic Trajectory Synthesis Parameters
Neural-Net Optimisation Parameters During the
LearningTrajectoty

Control Vector Sub-Group
End Conditions Vector Sub-Group
Constraint Vector Sub-Group
Optimisation Parameters Sub-Group

Neural-Net Optimisation Parameters During the
Controlled Trajectory

Control Vector Sub-Group
End Conditions Vector Sub-Group
Constraint Vector Sub-Group
Optimisation Parameters Sub-Group

Control Optimisation Parameters During the
Controlled Trajectory

Control Vector Sub-Group
End Conditions Vector Sub-Group
Constraint Vector Sub-Group
Optimisation Parameters Sub-Group

lnternallv Set Parameters in the OPTlMNN Code
30 Tile Page for: Internally Set Parameters in the OPTIMNN Code
31 Internally Set Parameters Group A: Internally Set Parameters for

Traiectory Propagation
38 Internally Set Parameters Group B: Internally Set Parameters for

Neural Network Operation
39 Internally Set Parameters Group C: Internally Set Parameters for

the Optimisation Processes.
48 Internally Set Parameters Group D: Internally Set Constants

Appendix A: Parameters - iii

Parameter Paae
A(L3rL2rL1) 16
A1 (4.Ld-i) 16
W-3J-2,Ll) 16
A3(L2,Li) 16
ALPHA(L3,L2.L1) 16
AMAXC(I) 28
AMAXNNC(I,J,K) 25
AMAXNNL(I,J,K) 22
AMINC(1) 28
AMINNNC(1,J.K) 25
AMINNNL(I,J,K) 22
AN(J,K) 14
B(L~,L~.LI) 16
B1 (L3gL2rL1) 16
B~(L~,L~,LI) 16
B31L2J-l) 16
BN(J,K) 14
C(L3J-2.Ll) 16
c1 (L3sL2kl) 16
C2(L3.L2,Ll) 17
C3(L2,Ll) 17
CDELAY 11

CMAXNNC(I JK) 39
CMAXNNL(IJK) 39

CMINNNC(IJK) 39
CMINNNL(IJK) 39
CN(J.K) 14

CONST1 6
CONST2 6
CONST3 6
CONST4 6
CONST5 6

CMAXC(I1) 39

CMINC(I1) 39

CON(*) 39

cv (0) 39
CVO(*) 40
CVBDC 40
CVBDNNC 40
CVBDNNL 41
CVSC(I I) 41

Parameter List

Parameter Paae

CVSNNC(IJK)
CVSNNL(IJK)
CVTID
CVUP
CW(I,J,K)
D(L3,Ldi)

D~(L~.L~,LI)
D1 (L3sL21L1)

D3tLd1)
DATAR
DCFREQ
DCLGTH
DELAY
DFREQ
DFREQO
DLFREQ
DLGM
DLLGTH
DN(J,K)
EBASE
EC(*)
EIGHT
FIVE
I
I
I
I
I
I
I
I
I
I
I
I
ICONC(1)

42
42
11
31
14
17
17
17
17
31
11
11
31
31
31
9
31
9
14
48
42
48
48
2
6
14
21
22
24
25
27
28
31
38
42
28

ICONNNC(I,J,K) 25
ICONNNL(I,J,K) 22
ICUT 32
ICV(I) 27
ICVDEF 42

Parame ter Paae

IECDEF 42
IFUNCT(L3,L2,L1) 17
I I 43
Il l 43
IlJK 43
IJK 43
IJKCVC(1,J.K) 24
IJKCVL(1,J.K) 21
IOPTC 29
IOPTNNC 26
IOPTNNL 23
IPHASE 32
SEED1 (L3,LzrL1) 18
ISEED~(L~,L~,LI) 18
ISEED3(L2,L1)
STEP
ISTEPO
J
J
J
J
J
J
J
J
J
J
J
J
J

JJ
JEC(J)

JJECC(J)
JJECL(J)
JJJ

18
32
11
2
6
14
21
21
23
24
24
26
27
33
38
43
27
43
24
21
43

JSEED1 (L3,L2,L1) 18
JSEED2(L3,LzIL1) 18
JSEED3(L2,L1) 19
K 2
K 14
K 21

ADDendix A: Parameters - v

I 1

Parameter List (Continued) I

Paramete r

K
K
K
K
K
L
L
L
L
L
L
Ll
L1
L1
L1
L2
L2
I2

L3
4
L3
LARGE1
LARGE2
LARGE3
LARGE4
LDELAY
LMAX
LMAX
LSTEP
LTBL
LTBL
MlTNC
MITNNNC
MITNNNL
MULT - NCON
NCONC
NCONNNC
NCONNNL - NCV - NEC

Paae
23
24
26
38
43
2
6
9
11
33
43
2
6
19
33
2
19
33
2
19
33
6
6
6
6
9
33
44
33
6
34
29
26
23
7
2
44
44
44
2
3

Parameter Paae
NFUNCT(J,K) 14
NI(K) 15
NlCV 44 - NlDlM 3
NIJKCVC 44
NIJKCVL 45 - NlJKDlM 3
NJ(K) 15 - NJDIM 3
NJEC 45
NJJECC 45
NJJECL 45 - NJKDIM 3
NK 15 - NKDIM 3 - NLlDIM 4
NW-1) 7
NWLl) 19 - NU1 4 - NL2DIM 4
NL3(L2,Li) 19 - NL321 4 - NL3DlM 4 - NLDIM 4 - NLTBL 5
NN(L3J-2J-i) 19
NNCID 11
NNlD 34
NNLID 9
NNUP 34
NNUPO 34
OMEGA(L3,L2,L1) 20
ONE 48
OUTC 29
OUTNNC 26
OUTNNL 23
PERIOD(L~,LS,L~) 20
PHASE(L~,L~,LI) 20

PI 48
PINDX 45

PHI(L3L2J-1) 20

Parame ter Pacle

PSI(L3,L2,Ll) 20
PT100 48
PT200 48

48
PT300
PT500
PT800 48
RTD 48
SCVC(l) 27
SCVNNC(1,J.K) 24
SCVNNL(I,J,K) 21
SMALL1 7
SMALL2 7
SMALL3 7
SMALL4 7
SMAXC(I) 28
STMODC 11
STMODL 9
SUMSQ 46
SUMSQW(L) 47
T 34
TABS 34 - TBLMAX 7 - TBLMAX 35
TClNlT 12
TCFINL 12
TCSTEP 12
TCTYPE 12
TCUT 35 - TD(L) 7 - TD(L) 35
TEN 48
TENM2 48
TENM3 48
TENM6 48
TENM8 48
TENP2 48
TENP3 48
TENP6 48
TENP8 48
TlNlT 7
TFINL 7

Appendix A: Parameters - vi

Parameter List (Continued)

Paramete r

THREE
TLlNlT
TLFINL
TLSTEP
TLTYPE
TREL
TSTEP - lTBL(LTBL) - lTBL(LTBL)
TWO
TWOPI
U NN(J ,K)
UPDATE
WC(JJ)
WNNC(J JJ)

!?age
48
9
9
10
10
35
36
7
36
48
48
38
12
47
47

Parameter
WNNL(J J J)
WTC(J)
WTNNC(J)
WTNNL(J)
WTSNNC(L)
WTSNNL(L)
XO(L3L2,Ll)
=(I) - XD(I,L) - XD(I,L)

XN(U
XNO(J,K)

XNN(1,J.K) - XTBL(I,LTBL)

Bus Parameter Qaae
47
27
25
22
13
10
20
36
8
36
15
36
38
8

- XTBL(I , LTBL)
YO(L3,L2.L1)
YAtJ) - YD(J,L) - YD(J,L)
W J)
YNO(J,K)
Y NN(J ,K)
YR~(L~,L~LI)

YR3(L2,Li)
ym(L3k21Ll) - YTBL(J,LTBL) - YTBL(J.LTBL)
ZERO

36
20
36
8
37
37
15
38
20
20
20
8
37
48

Denotes Data Defined by NAMELIST CDATA Input Data read from Subroutine INIT.
The CDATA NAMELIST input is used to define the trajectory,
optimisation, and neural-net models and options required to operate the
OPTIMNN System. - Denotes Data Defined by PARAMETER Statements. This Data defines the
Dimensions of the Principal Arrays of the OPTIMNN System.

-Denotes Data Defined by NAMELIST CDATA Input Data read from Subroutine
INIT, or by Directly Read On-Line Test Data, or by Internally
Computed Data. This Data defines the “Actual” (Reference) Plant Input
Vector and/or Output Vector at Specified Trajectory Time Points.

Appendix A: Parameters - vii

Appendix A: Parameters - viii

INPUT Parameters
to the

OPTIMNN Code

via Namelist CDATA - via PARAMETER Statements - via Namelist DDATA,
or On-Line Test Data,
or lnternally Computed Data

Denotes Data Defined by NAMELIST CDATA Input Data read from Subroutine INIT.
The CDATA NAMELIST input is used to define the trajectory,
optimisation, and neural-net models and options required to operate the
OPTIMNN System. - Denotes Data Defined by PARAMETER Statements. This Data defines the
Dimensions of the Principal Arrays of the OPTlMNN System.

-Denotes Data Defined by NAMELIST CDATA Input Data read from Subroutine
INIT, or by Directly Read On-Line Test Data, or by Internally
Computed Data. This Data defines the “Actual” (Reference) Plant Input
Vector andlor Output Vector at Specified Trajectory Time Points.

Appendix A: Parameters - 1

Parameter

Input Group 1

Dimensions of the Principal Arravs of the
OPTIMNN Svstem

Def au It
or

Initial
Value

I

J

K

L

L1

L2

4

w NCON

- NCV

1

1

1

1 '

1

1

1

See Def

NL2DIM

Definition

Index which Specifies the I-th Element Position in
the Origin Vector for the Specific Neural-Network
Layer specified by the index "K" (INTEGER*4).

_-.-..---.__--.-_-- __--.-------.-._--_-_____________l_ ...__ ~ -____ ____ ~ _---_---_.--.._.

Index which Specifies the J-th Element Position in
the Destination Vector for the Specific Neural-
Network Layer specified by the index "K"
(INTEGER*4).

Index which Specifies the K-th Specific Layer in the
Neural-Network (INTEGER*4).

Index which Specifies the L-th Data Set in the Data
Sliding Window (INTEGER*4).

Index which Assigns the Analytic Modelling
Function for a specific (L~,LZ,L~) to either the Plant
Input Vector (i.e., the Plant Control Vector) or the
Plant Output Vector (i.e., Plant MeasuremenVState
Vector) (INTEGER.4).

= 1 Specifies that the Model applies to an element of
the Plant Input Vector (i.e., the Plant Control
Vector).
Specifies that the Model applies to an element of
the Plant Output Vector (i.e., Plant
MeasurementlState Vector).

= 2

Index which Specifies the Element Number for the
Plant Input Vector (i.e., the Plant Control Vector) if
L1 = 1, or the Plant Output Vector (i.e., Plant
MeasurementlState Vector) if L1 = 2 (INTEGERf4).

Index which Specifies the Element Number of the
Analytic Modelling Function for a specific (L2,L1)
(INTEGER*4).

Dimension of the Constraint Function Vector
Arrays such as the CON(I1JK) and CON(I1I) Vectors
(I NTEG ER*4).

NCON = NL2DlM

Dimension of the Optimisation Control Vector
Arrays such as the CV(IJK) and CV(II) Vectors
(INTEGER*4).

NCV = JMAXO(NL2DIM, NIDIM*NJDIM*NKDIM)

Appendix A: Parameters - 2

Parameter - NEC

- NlDlM

- NiJKDiM

- NJDIM

- NJKDIM

- NKDlM

Input Group 1 (Continued)

Dimensions of the Princbal Arravs of the

Def au I t

Initial
Value

NUDIM

or

16

See Def

16

See Def

4

OPTIMNN Svstem

Definition

Dimension of the Optimisation End Conditions
Vector Arrays such as the EC(JJJ) and EC(JJ)
Vectors (INTEGER.4).

NEC = NUDIM

Dimension (Le.,., the 1.u.b) of the I-th Subscript of the
Neural-Network Arrays (Le., the subscript which
defines the element position in the Origin Vector for the
Neural-Network Layers) such as those defined in
Groups 5 and B (e.g., the CW(I,J,K), and XNN(I,J,K)
Arrays) but not necessarily limited to arrays defined in
tnese groups jiiuTEGEFk4j.

Equivalent Singie Dimension of the Thtee-Dimensional
Neural-Network Arrays such as those defined in
Groups 5 and B (e.g., the CW(I,J,K), and XNN(I,J,K)
Arrays) but not necessarily limited to arrays defined in
these groups (INTEGER.4).

NlJKDlM = NIDIM+NJDIM+NKDIM

Dimension (e.g., the i.u.b) of the J-th Subscript of the
Neural-Network Arrays (Le., the subscript which
defines the element position in the Destination Vector
for the Neural-Network Layers) such as those defined in
Groups 5 and B (e.g., the AN(J,K), CW(I,J,K),
UNN(J,K), and XNN(I,J,K) Arrays) but not necessarily
limited to arrays defined in these groups (INTEGER.4).

Equivalent Single Dimension of the Two-Dimensional
Neural-Network Arrays such as those defined in
Groups 5 and B (e.g., the AN(J,K), and UNN(J,K)
Arrays) but not necessarily limited to arrays defined in
these groups (INTEGER.4).

NJKDIM = NJDlM*NKDlM

Dimension (Le., the 1.u.b) of the K-th Subscript of the
Neural-Network Arrays (Le., the subscript which
defines the Specific Neural-Network Layer) such as
those defined in Groups 5 and B (e.g., the AN(J,K),
CW(1,J.K). NI(K), NJ(K), UNN(J,K), and XNN(1,J.K)
Arrays) but not necessarily limited to arrays defined in
these groups (IMEGER.4).

Appendix A: Parameters - 3

Input Group 1 (Continued)

Parameter

Dimensions of the Principal Arrays of the
OPTIMNN Svstem

- NLlDIM

- N U 1

- NL2DIM

- NL321

- NL3DIM

- NLDlM

Def au It
or

Initial
Value Definition

.-------I-__- ~ ~ .--- __._ _.--__._--_--_-__._.I_____ ~ __
2 Dimension (e.g., the 1.u.b) of the Lq-th Subscript of the

Analytic Trajectory Synthesis Arrays (Le., the
Subscript which Assigns the Analytic Modelling
Function for a specific (L3,L2,L1) to either the Plant
Input Vector if L1 = 1, or the Plant Output Vector if
L1 = 2) such as those defined in Group 6 (e.g., the
A3(L2,L1), IFUNCT(L~L~,LI), NL2(L1), NL~(L~,LI 1, and
NN(L~,L~,LI) Arrays) but not necessarily limited to
arrays defined in that group (INTEGER'4).

See Def Equivalent Single Dimension of the Two-Dimensional
Neural-Network Arrays such as those defined in
Groups 6 (e.g., the A3(L2.L1) and NL3(L2,LI) Arrays)
but not necessarily limited to arrays defined in that group
(INTEGER*4).

NL21 = NL2DlM*NLlDIM

12 Dimension (e.g., the 1.u.b) of the Llth Subscript of the
Analytic Trajectory Synthesis Arrays (Le., the
Subscript which the Element Number for the Plant
Input Vector if L1 = 1, or the Plant Output Vector)
such as those defined in Group 6 (e.g., the A3(L2,L1),
I FUNCT(L3; L2, Ll) , NL3(L2, L1) , and NN (L3, L2, Ll) Arrays)
but not necessarily limited to arrays defined in that group
(INTEGER*4).

See Def Equivalent Single Dimension of the Three-Dimensional
Analytic Trajectory Synthesis Arrays such as those
defined in Group 6 (e.g., the IFUNCT(L~,L~,LI) and
NN(L3,L2,L1) Arrays) but not necessarily limited to
arrays defined in that group (INTEGER*4).

NL321 = NL3DIM*NL2DIM*NLl DIM

7 Dimension (e.g., the 1.u.b) of the Lpth Subscript of the
Analytic Trajectory Synthesis Arrays (Le., the
Subscript which Specifies the Element Number of the
Analytic Modelling Function for a specific (L2,L1))
such as those defined in Group 6 (e.g., the
IFUNCT(L3,L2,L1) and NN(L3,L2,L1) Arrays) but not
necessarily limited to arrays defined in that group
(I NTEG ER*4).

Dimension (i.e., the 1.u.b) of the L-th Subscri t of the
Data Set Arrays (i.e., the subscript which de ines the
Specific Data Set) in the Data Sliding Window such
as those defined in Group A (e.g., the TD(L), XD(I,L),
and YD(J,L) Arrays) but not necessarily limited to arrays
defined in this group (INTEGER*4).

P 300

Appendix A: Parameters - 4

Input Group 1 (Continued)

Dimensions of the Principal Arravs of the
OPTIMNN Svstem

Default

Initial
Parameter Value Definition

or

Dimension (Le., the 1.u.b) of the LTBL-th Subscri of
the Data Set Arrays (i.e., the subscript which de ines
the Specific Data Set) such as those defined in
Group 2 (e.g., the lTBL(LTBL), XTBL(I,LTBL), and
YTBL(J,LTBL) Arrays), but not necessarily limited to
arrays defined in this group, in the Plant Model Data
Table used when the 'Actual Plant" is modelled using
Routine TSTATE (INTEGER*4).

p' - NLTBL 600

Appendix A: Parameters - 5

Input Group 2

Control Traiectories) ProDagation Parameters
Overall Traiectorv (Excluding Learnina and

Parameter

CONST1

CONST2

CONST3

CONST4

CONST5

I

J

L

L1

LARGE1

LARGE2

LARGE3

LARGE4

LTBL

Default
or

Initial
Value Definition

0.200

0.500

0.800

1.200

1.500

1

1

1

1

1 .O D+03

1.0 D+O6

1 .O D+09

1 .o t12

Input Constant (REAL*8).

Input Constant (REAL*8).

Input Constant (REAL*8).

Input Constant (REAL'8).

Input Constant (REAL*8).

Index which Specifies the I-th Element Position in
the Plant Input Vectors (Le., the Plant Control
Vector) XA(I), XD(I,L), and XN(I) (INTEGER'4).

Index which Specifies the J-th Element Position in
the Plant Output Vectors (i.e., the P l a n t
MeasuremenUState Vector) YA(J), YD(J,L), and
YN(J) (INTEGER'4).

Index which Specifies the L-th Data Set in the Data
Sliding Window (INTEGER*4).

Index which Ass igns the Analytic Modelling
Function for a specific (L3,L2,L1) to either the Plant
Input Vector (Le., the Plant Control Vector) or the
Plant Output Vector (Le., Plant MeasuremenVState
Vector) (INTEGER*4).

= 1 Specifies that the Model applies to an element of
the Plant Input Vector (Le., the Plant Control
Vector).

= 2 Specifies that the Model applies to an element of
the Plant Output Vector (i.e., Plant
MeasuremenVState Vector).

Input Constant with a large value (REAL*8).

Input Constant with a large value (REAL*8).

Input Constant with a large value (REAL*8).

Input Constant with a large value (REAL*8).

Index which Specifies the LTBL-th Data Set in the
Plant Model Data Table when the "Actual Plant" is
modelled using Routine TSTATE (INTEGER*4).

Appendix A: Parameters - 6

Input Group 2 [Continued)

Overall Traiectorv (Excludina Learnina and
Control Trajectories) Propaaation Parameters

Parameter

Default

Initial
Value

or

Definition

MULT

SMALL1

SMALL2

SMALL3

SMALL4 - TBLMAX

0- TD(L)

TlNlT

TFlNL

0- TTBL(LT6L)

0

1

1.0 D-03

1 .O D-06

1.0 D-09

1.0 D-12

1

O.OO0

O.OO0

Subsequent Case Flag. MULT is automatically reset
to zero after each case is completed. It is necessary to
input MULT equal to a positive integer value if it is
desired to run a subsequent case with new NAMELIST
CDATA values. (INTEGER.4).

Total Number of Elements in the Plant Input Vector
(i.e., the Plant Control Vector) if L1 = 1. or the Plant
Output Vector (i.e., Plant MeasuremenVState Vector)
if L1 = 2; NOT to be confused with NUDIM, the
Dimension of the L2-th Subscript of the Analytic
Trsjectwy Sythesis Arrays (!NEGER*4!.

Input Constant with a small value (REAL.8).

Input Constant with a small value (REAL.8).

Input Constant with a small value (REAL*8).

Input Constant with a small value (REAL.8).

The Number of Data Sets (i.e., the Maximum Value
that the index LTBL can have) in the Plant Model
Data Table (INTEGER.4).

1 I LTBL I TBLMAX

Either the Absolute Time (TABS) or the Relative
Time (TREL) as appropriately defined by TLTYPE or
TCTYPE corresponding to the “Actual” (Reference)
Plant defined in the L-th Data Set in the Data Sliding
Window (REAL*8).

Initial Absolute Time for the Entire Process (REAL.8).

Final Absolute Time for the Entire Process (REAL*8).

Either the Absolute Time (TABS) or the Relative
Time (TREL) as appropriately defined by TLTYPE or
TCTYPE conesponding to the “Actual” (Reference)
Plant defined in the LTBL-th Data Set of the Plant
Model Data Table used when the “Actual Planr is
modelled using Routine TSTATE (REAL-).

Appendix A: Parameters - 7

Input Group 2 (Cant i nued)

Control Traiectories) Propaaation Parameters
Overall Traiectory (Excludina Learnina and

*** XD(I,L)

*- XTBL(I ,LTBL)

*- Y D(J , L)

0- YTBL(J,LTBL)

The I-th Element of the Input Vector (Le., the
Control Vector) to the “Actual” (Reference) Plant
defined in the L-th Data Set in the Data Sliding
Window (REAL*8).

The I-th Element of the Input Vector (Le., the
Control Vector) to the “Actual” (Reference) Plant
defined in the LTBL-th Data Set of the Plant Model
Data Table used when the “Actual Plant” is modelled
using Routine TSTATE (REAL*8).

The J-th Element of the Output Vector (Le., the
Measurement/State Vector) from the “Actual”
(Reference) Plant defined in the L-th Data Set in the
Data Sliding Window (REAL*8).

The J-th Element of the Output Vector (i.e., the
MeasurementIState Vector) from the “Actual”
(Reference) Plant defined in the LTBL-th Data Set
of the Plant Model Data Table used when the “Actual
Plant“ is modelled using Routine TSTATE (REAL*8).

Appendix A: Parameters - 8

Input Grour, 3

Learnina Traiectory Propaaation Parameters

Parameter

DLFREQ

9 DLLGTH

L

LDEIAY

NNLID

STMODL

TLlNlT

TLFINL

Default
or

Initial
Value

1

-_I.

10

1

0

1

1

O.Oo0

O.OO0

Definition

Data Set Read Frequency After the First Neural-Net
(NN) CW(I,J,K)s Update During the Learning Trajectory
(INTEGER.4).

Window LengthBite During the Learned Trajectory;
Number of Read Data Sets Contained in a Window
During the Learned Trajectory (INTEGER.4).

Index which Specifies the L-th Data Set in the Data
Sliding Window (INTEGER*4).

Neural-Net (NN) CW!l,J,K)s U p d a t e
Frequencyflnhibit Flag for the Learning Trajectory
(INTEGERt4).
I 0 Do Update NN CW(I,J,K)s during the

Learning Trajectory.
> 0 Update NN CW(I,J,K)s every NNLID times during

the Learning Trapctory.

Specifies the "Actual" (Reference) Plant Model
Option during the Learning Trajectory (INTEGER*4).
= 1 Syntheslse the 'Actual" (Reference) Plant Model

.b Combining Selected Individual Analytic
dodels, that is Model the 'Actual" Plant by using
Routine ASTATE.

= 2 Define the 'Actual" (Reference) Plant Model
directly from On-Line Test Data, that is Model the
'ActuaV Plant by using Routine DSTATE.

= 3 Define the uActual" (Reference) Plant Model from
Stored Data Tables, that is Model the 'Actual"
Plant by using Routine TSTATE.

= 4 Define the Actual (Reference) Plant Model from a
User Supplied Model, that is Model the 'Actual"
Plant by using Routine USTATE.

Either the Initial value of the Absolute Time (Le.,
TABS) or the Initial value of the Relative Time (Le.,
TREL) as appropriately defined by TLTYPE for the
Learning Trajectory (REAL*8).

Either the Final value of the Absolute Time (Le.,
TABS) or the Final value of the Relative Time (Le.,
TREL) as appropriately defined by TLTYPE for the
Learning Trajectory (REAL*8).

Appendix A: Parameters - 9

Input Group 3 (Continued)

Learnina Traiectorv Propaaation Parameters

TLTYPE 0 Time Type Definition Flag for the Learning Trajectory
(INTEGER*4).
I 0 T = the Current Absolute Time (i.e., T = TABS),

that is time is measured from the Start of the Entire
Process (i.e., time is measured from that defined
by TLINIT)

> 0 T = the Current Relative Time (Le., T = TREL),
that is time is measured from the Start of the
Learning Trajectory (Le., time is measured from that
defined by TLINIT).

WTSNNL(L) 1.OOO Weighting Coefficient of the L-th Data Set in the
Data Sliding Window during the Learning Trajectory
(R EAL*8).

Appendix A: Parameters - 10

~~

Input Group 4

Controlled Traiectory Propaaation Parameters

Parameter

CDEIAY

CVTID

= DCFREQ

DCLGTH

ISTEPO

L

NNCID

STMODC

Default
or

Initial
Value

0

1

?

10

1

1

Definition

Data Set Read Delay Counter Limit During the
Controlled Trajectory (INTEGER.4).

Plant Input Vector (Le., the Plant Control Vector)
XA(0) Update Inhibit Flag for the Controlled
Trajectory (INTEGER.4).

I 0 Do U Update XA(0) during the Controlled
Trajectory.

> 0 Update XA(*) every CVTID times during the
Controlkd Trajectoty.

Date Se! Reed Fqllsncy A??er the Firs! Neural-Net
(NN) CW(I,J,K)s Update During the Controlled
Trajectory (INTEGER.4).

Window LengWSii During the Controlled Trajectory;
Number of Read Data Sets Contained in a Window
During the Controlled Trajectory. If DCLGTH is Input
Less Than or Equal to Zero, DCLGTH is Reset Equal
To DUGTH (INTEGER.4).

Step Reset Inhibit Flag for the Controlled Trajectory
(INTEGER.4).
= 0 and only if STMODC # 2 or 3, Reset STEP to

ISTEP = 1 at the start of the Controlled Trajecto~y.
0 or if STMODC = 2 or 3, Reset STEP to

STEP = ISTEP + ISTEPO at the start of the
Controlled Trajectory.

Index which Specifies the L-th Data Set in the Data
Sliding Window (INTEGEW4).

Neural-Net (NN) CW(I,J,K)s Update
Frequencyfinhibit Flag for the Controlled Trajectory
(INTEGER+4).
I 0 Do Update NN CW(I,J,K)s during the

Controlled Trajectory.
> 0 Update NN CW(I,J,K)s every NNLID times during

the Controlled Trajectory.

Specifies the "Actual" (Reference) Plant Model
Option during the Controlled Trajectory (INTEGER.4).
= 1 Synthesise the "Actual" (Reference) Plant Model

by Combining Selected Individual Analytic
Models, that is Model the "Actual" Plant by using
Routine ASTATE.

Appendix A: Parameters - 11

Input Group 4 (Continued)

Controlled Traiectorv Propaaation Parameters

STMODC 1

TClNlT O.OO0

TCFINL O.OO0

TCSTEP 1 .ooo

TCTYPE 0

UPDATE 1

Definition

(Continued)
= 2 Define the "Actual" (Reference) Plant Model

directly from On-Line Test Data, that is Model the
"Actual" Plant by using Routine DSTATE.

= 3 Define the "Actual" (Reference) Plant Model from
Stored Data Tables, that is Model the "Actual"
Plant by using Routine TSTATE.

= 4 Define the Actual (Reference) Plant Model from a
User Supplied Model, that is Model the "Actual"
Plant by using Routine USTATE.

Either the Initial value of the Absolute Time (Le.,
TABS) or the Initial value of the Relative Time (Le.,
TREL) as appropriately defined by TCTYPE for the
Controlled Trajectory (REAL*8).

Either the Final value of the Absolute Time (i.e.,
TABS) or the Final value of the Relative Time (Le.,
TREL) as appropriately defined by TCTYPE for the
Controlled Trajectory (REAL*8).

Time Step for the Controlled Trajectory (REAL*8).

Time Type Definition Flag for the Learning Trajectory
(INTEG ER*4).
I 0 T = the Current Absolute Time (i.e., T = TABS),

that is time is measured from the Start of the Entire
Process (i.e., time is measured from that defined
by TLINIT)

> 0 T = the Current Relative Time (i.e., T = TREL),
that is time is measured from the Start of the
Controlled Trajectory (i.e., time is measured from
that defined by TCINIT).

Sliding Window First Data Set Update Flag for the
Controlled Trajectory (INTEGER*4).
I 0 Do Update the First Data Set (L = 1) of the

Sliding Window Table (i.e., XD(I,l) and YD(J,l))
to those determined by the Current Control
Optimisation (i.e., XN(I) and YN(J)).

> 0 Update the First Data Set (L = 1) of the Sliding
Window Table (i.e., XD(I,l) and YD(J,l)) to those
determined by the Current Control Optimisation
(i.e., XN(I) and YN(J)).

Appendix A: Parameters - 12

Input Group 4 (Continued)

Controlled Traiectory Propaaation Parameters

Default

Initial
Parameter Value Definition

or

^_I -
WTSNNC(L) 1.OOO Weighting Coefficient of the L-th Data Set in the

Data Sliding Window during the Controlled Trajectory
(REAL.8).

Appendix A: Parameters - 13

Input Group 5

Neural Network Parameters

Default
or

Initial
Value ..-._... -...----___ Parameter

~ _--.

AN(J,K) 0.500

BN(J,K) 0.500

CN(J,K) 1 .Ooo

CW(I, J,K) 1 .OOO

DN(J,K) -1 .OD+06

1

1

K 1

NFUNCT(J,K) 0

Definition

A Constant of the Pass-Through Function (Node
Filter) Model at the J-th Exit (Destination)
Position for the K-th Neural-Net Layer (REAL.8).

..-..--_.I.....---.-_-- I-___-.--...- ~ _....... - ._I__ ~ _._.._ _.--._.I___-___._-

A Constant of the Pass-Through Function (Node
Filter) Model at the J-th Exit (Destination)
Position for the K-th Neural-Net Layer (REAL*8).

A Constant of the Pass-Through Function (Node
Filter) Model at the J-th Exit (Destination)
Position for the K-th Neural-Net Layer (REAL*8).

Neural-Si nal Weighting Coefficient associated

Neural-Net Layer from the I-th Entry (Origin)
Position directed to the J-th Exit (Destination)
Position (REAL*8).

with the k! ntry Signal XNN(I,J,K) to the K- th

A Constant of the Pass-Through Function (Node
Filter) Model at the J-th Exit (Destination)
Position for the K-th Neural-Net Layer (REAL*8).

Index which Specifies the I-th Element Position in
the Origin Vector for the Specific Neural-Network
Layer specified by the index K (INTEGER*4).

Index which Specifies the J-th Element Position
in the Destination Vector for the Specific Neural-
Network Layer specified by the index K
(I NTEGER*4).

Index which Specifies the K-th Specific Layer in
the Neural-Network (INTEGER*4).

Specifies the Pass-Through Function (Node
Filter) Model at the J-th Exit (Destination)
P o s i t i o n for the K-th Neural-Net Layer
(INTEG ER*4).

= 0 Specifies the No-Pass (i.e., the Constant
Function) Node Filter Function defined by
Routine PFNCTOO.

= 1 Specifies the Direct-Pass (i.e., the Linear
Function) Node Filter Function defined by
Routine PFNCTO1 .

= 2 Specifies the Hyperbolic Tangent (Le., the
Threshold Function) Node Filter Function
defined by Routine PFNCTOZ.

Appendix A: Parameters - 14

Innut Group 5 (Continued)

Neural Network Parameters

Default
or

lnitiil
Value Definition - Parameter

N FUNCT(J , K) 0 (Continued)
= 3 Specifies the First Derivative of the

Hyperbolic Tangent (Le., the P u l s e
function) Node Filter Function defined by
Routine PFNCTa3.

NI(K)

NJ(K)

NK

XNO(J,K)

YNO(J,K)

3

1

Total Number of Elements in the Origin Vector
(Le., the Total Number of Origin Positions) for the
Specific Neural-Network Layer specified by the index
K (INTEGER.4).

Total Number of Elements in the Destination

Positions) for the Specific Neural-Network Layer
specified by the index K (INTEGER.4).

.. vectof (Le., ihe Totat Nuiiibei trf Zesti i~~tioi~

2 Total Number of Layers (Le., the 1.u.b. of the index
K) in the Neural-Network (INTEGER.4).

O.OO0 The Input Signal UNN(J,K) Horizontal Translation
Constant for the Ori in of the Pass-Through

(Destination) Position for the K-th Neural-Net
Layer (REAL.8).

F u n c t i o n (Node F ilter) at the J-th Exit

O.OO0 The Exit Signal YNN(J,K) Vertical Translation
Constant for the Ori in of the Pass-Through

Exit
(Destination) Position for the K-th Neural-Net
Layer (REAL*8).

F u n c t i o n (Node F ilter) at the J-th

Appendix A: Parameters - 15

Input Group 6

Analvtic Traiectorv Svnthesis Parameters

ALPHA(L3,LzIL1) 1 .000

0.500

O.OO0

C(L3L2Ll) 0.250

Cl(L3L2rLl) O.OO0

Definition

A Constant of the Analytic Trajectory Modelling
Functions. (REAL*8).

A Constant of the Random Uniform Distribution
Analytic Trajectory Modelling Function when this
function is called as a Primary Analytic Model.
(REAL*8).

A Constant of the Random Uniform Distribution
Analytic Trajectory Modelling Function when this
function is called to Randomise an Individual
Primary Analytic Model. (REAL*8).

A Constant of the Random Uniform Distribution
Analytic Trajectory Modelling Function when this
function is called to Randomise the Combined
Primary Analytic Models. (REAL*8).

The Convergence/Diver ence Constant of the
Exponential Part of the nveloped Sinusoidal
Analytic Trajectory Modelling Function (REAL*8).

A Constant of the Analytic Trajectory Modelling
Functions. (REAL*8).

A Constant of the Random Uniform Distribution
Analytic Trajectory Modelling Function when this
function is called as a Primary Analytic Model.
(R EAL*8).

A Constant of the Random Uniform Distribution
Analytic Trajectory Modelling Function when this
function is called to Randomise an Individual
Primary Analytic Model. (REAL*8).

A Constant of the Random Uniform Distribution
Analytic Trajectory Modelling Function when this
function is called to Randomise the Combined
Primary Analytic Models. (REAL*8).

A Constant of the Analytic Trajectory Modelling
Functions. (REAL*8).

A Constant of the Random Uniform Distribution
Analytic Trajectory Modelling Function when this
function is called as a Primary Analytic Model.
(REAL'8).

Appendix A: Parameters - 16

~~ ~~ ~

InDut Group 6 (Continued)

I

Parameter

Analvtic Traiectory Sv nthesis Parameters

Default
or

Initial
Value

O.Oo0

O.OO0

-1 .OD-

0.m

O.OO0

O.OO0

IFUNCT(L3,L2,L1) 0

- Definition

A Constant of the Random Uniform Distribution
Analytic Trajectory Modelling Function when this
function is called to Randomise an Individual
Primary Analytic Yodel. (REAL*8).

A Constant of the Random Uniform Distribution
Analytic Trajectory Modelling Function when this
function is called to Randomise the Combined
Primary Analytic Models. (REAL*8).

A Constant of the Analytic Trajectory Modelling
Functions. (REAL*8).

A Cmstan! d the Random Unifarm Distribution
Analytic Trajectory Modelling Function when this
function is called as a Primary Analytic Model.
(REAL*8).

A Constant of the Random Uniform Distribution
Analytic Trajectory Modelling Function when this
function is called to Randomise an Individual
Primary Analytic Model. (REAL*8).

A Constant of the Random Uniform Distribution
Analytic Trajectory Modelling Function when this
function is called to Randomise the Combined
Primary Analytic Models. (REALI8).

Specifies the Analytic Function Model for a
Specific (L3,Lz1L1) (IMEGER*4)..

= o

= 1

= 2

= 3

= 4

= 5

= 6

= 7

Specifies the Random Uniform Distribution
Function defined by Routine ASTATRAN.
Specifies the Linear Function (i.e-, the Ramp
Function) defined by Routine ASTAlEOl .
Specifies the Serpentine Curve Function
defined by Routine ASTATE02.
Specifies the Witch of Agnesi Function
defined by Routine ASTATEO3.
Specifies the Inverted Witch of Agnesi
Function defined by Routine ASTATEM.
Specifies the Enveloped Sinusoidal Function
defined by Routine ASTATEOS.
Specifies the Hyperbolic Tangent Function
(i.e., the Threshold Function) defined by
Routine ASTATEM.
Specifies the First Derivative of the
HvDerbolic Tanaent Function (Le.. the
Pu lse Functiorij defined by Routine
ASTATEO’I.

Appendix A: Parameters - 17

Input Group 6 (Continued)

Analvtic Traiectorv Svnthesis Parameters

Def au It
or

Initial
Value Definition ____-__.___.._ ~ __lll____________.--.--I---.----------I_- ~ __-_I_--.-._.--. ~

Parameter

ISEED1 (4,L2,L1) 78985723 The Seed required for the First Call to the VAWVMS
S stem Subroutine RAN from Subroutine
AgTATRAN when ASTATRAN is called as a Primary
Analytic Model. This seed is updated automatically
upon exit from RAN. Although there are no
restrictions on the value of this seed other than that it
is an INTEGER*4 variable, the best results are
obtained when it is initially input as a large odd
integer (INTEGER*4).

-.

ISEED2(L3,L2,Ll) 81692875 The Seed required for the First Call to the VAWVMS
System Subroutine RAN from Subroutine
ASTATRAN when ASTATRAN is called to
Randomise an Individual Primary Analytic Model.
This seed is updated automatically upon exit from
RAN. Although there are no restrictions on the value
of this seed other than that it is an INTEGER*4
variable, the best results are obtained when it is
initially input as a large odd integer (INTEGER*4).

ISEED3(L2,L1) 72919329 The Seed required for the First Call to the VAWVMS
System Subroutine RAN from Subroutine
ASTATRAN when ASTATRAN is called to
Randomise the Combined Primary Analytic Models.
This seed is updated automatically upon exit from
RAN. Although there are no restrictions on the value
of this seed other than that it is an INTEGER*4
variable, the best results are obtained when it is
initially input as a large odd integer (INTEGERf4).

JSEED1(L3,L2,L1) 95428381 The Seed required for the Second Call to the
VAXNMS System Subroutine RAN from Subroutine
ASTATRAN when ASTATRAN is called as a Primary
Analytic Model. This seed is updated automatically
upon exit from RAN. Although there are no
restrictions on the value of this seed other than that it
is an INTEGER*4 variable, the best results are
obtained when it is initially input as a large odd
integer (INTEGER*4).

JSEED2(L3,L2,Ll) 68377297 The Seed required for the Second Call to the
VAXNMS System Subroutine RAN from Subroutine
ASTATRAN when ASTATRAN is called to
Randomise an Individual Primary Analytic Model.
This seed is updated automatically upon exit from
RAN. Although there are no restrictions on the value
of this seed other than that it is an INTEGER*4
variable, the best results are obtained when it is
initially input as a large odd integer (INTEGER*4).

Appendix A: Parameters - 18

~

Input G rom 6 (Continued)

Analvtic Traiectow Sv nthesis Parameters

Default

Initial
Parameter Value

or

JSEED3(Lz,L1) 89672847

1

L2

4

1

Definition

The Seed required for the Second Call to the
VAWVMS System Subroutine RAN from Subroutine
ASTATRAN when ASTATRAN is called to
Randomise the Combined Primary Analytic Models.
This seed is updated automatically upon exit from
RAN. Although there are no restrictions on the value
of this seed other than that it is an INTEGER*4
variable, the best results are obtained when it is
initially input as a large odd integer (INTEGERf4).

Index which Assigns the Analytic Modelling
Function for a specific (L3,L2,L1) to either the Plant
Input Vector (i.e., the Plant Control Vector) or the
Pkn? Qutp!! V-Q~ (i e , Plant MeasuremenVState
Vector) (INTEGER*4).

= 1 Specdies that me Modei appiies to an eiement
of the Plant Input Vector (Le., the Plant
Control Vector).

= 2 Speafms that the Model applies to an element
of the Plant Output Vector (i.e., Plant
MeasummenVState Vector).

Index which Specifies the Element Number for the
Plant Input Vector (i.e., the Plant Control Vector) if
L1 = 1, or the Plant Output Vector (Le., Plant
MeasuremenVState Vector) if L1 = 2 (INTEGERf4).

Index which Specifies the Element Number of the
Analytic Modelling Function for a specific (L2,Ll)
(INTEGER*4).

Total Number of Elements in the Plant Input
Vector (i.e., the Plant Control Vector) if L1 = 1, or
the Plant Output Vector (i.e., Plant
MeasuremenVState Vector) if L1 = 2; NOT to be
confused with NWDIM, the Dimension of the L2-th
Subscript of the Analytic Trajectory Synthesis Arrays
(INTEGER*4).

Total Number of Analytic Modelling Functions
for a specific (L2,Ll); NOT to be confused with
NL3DIM, the Dimension of the L3-th Subscript of the
Analytic Trajectory Synthesis Arrays (INTEGEFP4).

Harmonic Number of the Primary Frequency (i.e.,
the Coefficient of the Primary Frequency) of the
Sinusoidal Part of the Enveloped Sinusoidal
Analybc Trajectory Modelling Function (REAL*8).

Appendix A: Parameters - 19

Input Group 6 (Continued)

Analvtic Traiectorv Svnthesis Parameters

PERIOD(L3,L2,L1) 1 . 0 ~ 1 0 + ~ ~

PHASE(L3,L2,L1) 0.000

0.000

O.OO0

O.OO0

0.000

O.OO0

Definition

2x times the Primary Fre uency (or the Period if

Enveloped Sinusoidal Analytic Trajectory Modelling
Function (REAL*8).

NN(L3,L2,L1) 2 I O *) of the % inusoidal Part of the

Period of the Analytic Trajectory Modelling
Function defined for a specific (L3,L2.L1) (REAL*8).

Either the Absolute Time (TABS) or the Relative
Time (TREL) as appropriately defined by TLTYPE or
TCTYPE of the Start of a Cycle of the Analytic
Modelling Function defined for a specific (L3,L2,L1)
(REAL*8).

The Phase Angle of the Sinusoidal Part of the
Enveloped Sinusoidal Analytic Trajectory Modelling
Function (REAL*8).

The Phase Angle of the Exponential Part of the
Enveloped Sinusoidal Analytic Trajectory Modelling
Function (REAL*8).

Either the Absolute Time (TABS) or the Relative
Time (TREL) as appropriately defined by TLTYPE or
TCTYPE of the Origin of the Analytic Trajectory
Modelling Function defined for a specific (L3,L2,L1)
(REAL*8).

A Constant added to the Analytic Trajectory
Modelling Function defined for a specific (L3,L2,L1)
(REAL*8).

A Constant added to the Random Uniform
Distribution Analytic Trajectory Modelling Function
defined for a specific (L3,L2,L1) when this function is
called as a Primary Analytic Model. (REAL*8).

A Constant added to the Random Uniform
Distribution Analytic Trajectory Modelling Function
defined for a specific (L3,L2,L1) when this function is
called to Randomise an Individual Primary
Analytic Model. (REAL*8).

A Constant added to the Random Uniform
Distribution Analytic Trajectory Modelling Function
defined for a specific (L3,L2.L1) when this function is
called to Randomise the Combined Primary
Analytic Models. (REAL.8).

Appendix A: Parameters - 20

I

Neural-Net Optimisation Parameters Durina the
Learning Traiectory

Default
or

Initial
Parameter Value Definition

1 Index which Specifies the I-th Element Position in
the Origin Vector for the Specific Neural-Network
Layer specified by the index "K" (INTEGERI4).

I JKCVL(I , J,K) 0 Control Vector Identification Flag. This flag
vector specifies whether or not the Neural-Signal
Weighting Coefficient (i.e., CW(I,J,K)) associated
with the Entry Signal XNN(1,J.K) to the K-th Neural-
Net Layer from the I-th Entry (Ori in) Position
directed to the J-th Exit (Destination! Position will
be an element in the Optimisation Control Vector
CV(*) (INTEGER*4).

-< 0 CW(1,J.K) IS NOT an Element of CV(*).

> 0 CW(1,J.K) IS an Element of CV(*).

J

K

1 Index which Specifies the J-th Element Position
in the Destination Vector for the Specific Neural-
Network Layer specified by the index "K"
(I NTEG ER*4).

1 Index which Specifies the K-th Specific Layer in
the Neural-Network (INTEGER*4).

SCVNNL(I,J,K) 1.OOO The Vector of Scaling Coefficients for the
elements of the Neural-Si nal Weighting

Optimisation Process (REAL* 8).
Coefficient Matrix (i.e., CW(I, 9 ,K)) required by the

End Conditions Vector SubGroq~

J 1 Index which Specifies the J-th Element Position
in the Plant Output Vectors (Le., the Plant
YeasuremenUState Vector) YA(J), YD(J,L), and
YN(J) (INTEGERc4).

vector specifies whether or not [YN(J) - YA(J)
JJECL(J) 0 End Conditions ldentif ication Flag. This fla

(i.e., the difference between the J-th Elements o
the Measurement/State Vectors) will be an
element in the Optimisation End Conditions Vector
EC(*) and if WTNNL(J)*[YN(J) - YA(J)]Z will be
a term in the Performance Index P l N D X
(INTEGER*4).

3

Appendix A: Parameters - 21

Input Group 7 (Continued)

NeuraI.Net Optimisation Parameters Durinq the
Learnina Traiectorv

Def au It
or

Initial
Value Definition _-____-___- _____-_---- ~ ~ ~

Parameter __-_
d Co nditions Vecto r Sub4 r o w (CO ntinued)

JJECL(J) (Continued)

I 0 [YN(J) - YA(J)] IS NOT an Element of EC(*)
and WTNNL*[YN(J) - YA(J)I2 IS NOT a
term in PINDX.
[YN(J) - YA(J)] IS an Elem nt of EC(*) and
wTNNL*[YN(J) - YA(J$ IS a term in
PINDX.

> 0

WTNNL(J) 1.OOO Weight ing Coef f i c ien t element in the
WTNNL(J)*[YN(J) - YA(J)]* term in the
Performance Index PINDX (REAL* 8).

Constraint Vector Sub-G rOUD

AMAXNNL(I,J,K) 100.00

AMINNNL(I,J,K) -100.00

I 1

ICONNNL(I,J,K) 0

The Least Upper Bounds (1.u.b.) of the Control
Vector Elements (REAL* 8).

CW(I,J,K) I AMAXNNL(I,J,K)

The Greatest Least Bounds (g.1.b.) of the Control
Vector Elements (REAL* 8).

AMINNNL(I,J,K) I CW(I,J,K)

Index which Specifies the I-th Element Position in
the Origin Vector for the Specific Neural-Network
Layer specified by the index "K" (INTEGER*4).

Constraint Function Vector Identification Flag.
This flag vector specifies whether or not the Neural-
Signal Weighting Coefficient (i.e., CW(I,J,K))
associated with the Entry Si nal XNN(I,J,K) to the

Origin) Position directed to the J-th Exit
Destination) Position will be constrained by an

element of the Constraint Function Vector CON (0)

rentlv NOT an oDt ion (INTEGER*4). Cur
I 0 CW(I,J,K) IS NOT Constrained by an

> 0 CW(1,J.K) IS Constrained by an element of

K-th Neural-Net Layer 7 rom the I-th Entry

I
element of CON (0) .

CON(*).

Appendix A: Parameters - 22

Input Group 7 (Continued)

Neural-Net Optimisation Parameters Durina the
Learnina Traiectory

Def au I t
or

Initial
Parameter Value Definition

Constraint Vector S u b - G r ~ u ~ [Continued)

J

K

1 Index which Specifies the J-th Element Position
in the Destination Vector for the Specific Neural-
Network Layer specified by the index "K"
(INTEG ER*4).

Index which Specifies the K-th Specific Layer in
the Neural-Network (INTEGERf4).

1

arameters Sub-Groug

IOPTNNL 0 ' Gradient Evaluation Option Specification Flag
(INTEGERf4).
5 0 No Neural-Net Update/Optimisation.
= 1 The Gradients required during the Neural-Net

Update/Optimisation Process are evaluated
using a Finite Differences Method.
The Gradients required during the Neural-Net
Update/Optimisation Process are evaluated
using an Analytic Method. Current Iv NOT
gn m i o n

= 2

MITNNNL

OUTNNL

200 The Maximum Number of Optimisation lterat-ions
allowed before the Optimisation Process is
terminated. (INTEGER.4).

0 The 0 p t imisat ion I t e ra t i on 0 ut put bvel
Specification Flag. (INTEGERf4).
= 0 No Optimisation Iteration Information is

written.
= 1 Only the Final Optimisation Iteration

Convergence Information is written.
= 2 One Line of Intermediate Optimisation

Iteration Information is written for Each
Iteration.

= 3 Detai led Intermediate Optimisation
Iteration Information is written for Each
Iteration.

Appendix A: Parameters - 23

Input Group 8

Neural.Net Optimisation Parameters Durina the
Controlled Traiectory

I

I JKCVC(I , J,K)

J

K

SCVNNC(I, J,K)

1 Index which Specifies the I-th Element Position in
the Origin Vector for the Specific Neural-Network
Layer specified by the index "K" (INTEGER*4).

0 Control Vector Identification Flag. This flag
vector specifies whether or not the Neural-Signal
Weighting Coefficient (Le., CW(I,J,K)) associated
with the Entry Signal XNN(I,J,K) to the K-th Neural-
Net Layer from the I-th Entry (Ori in) Position
directed to the J-th Exit (Destination7 Position will
be an element in the Optimisation Control Vector
CV(.) (INTEGERI4).

I 0 CW(1,J.K) IS NOT an Element of CV(0).

> 0 CW(I,J,K) IS an Element of CV(0).

1 Index which Specifies the J-th Element Position
in the Destination Vector for the Specific Neural-
Network Layer specified by the index "K"
(INTEG ER*4).

Index which Specifies the K-th Specific Layer in
the Neural-Network (INTEGER*4).

1

l.OO0 The Vector of Scaling Coefficients for the
elements of the Neural-Signal Weighting
Coefficient Matrix (i.e., CW(I,J,K)) required by the
Optimisation Process (REAL* 8).

End Conditions Vector Sub-Group

J 1 Index which Specifies the J-th Element Position
in the Plant Output Vectors (i.e., the Plant
MeasurementBtate Vector) YA(J), YD(J,L), and
YN(J) (INTEGER*4).

JJECC(J) 0 End Conditions Identification Flag. This fla
vector specifies whether or not [YN(J) - YA(J)!
(i.e., the difference between the J-th Elements o
the MeasurementlState Vectors) will be an
element in the Optimisation End Conditions Vector
EC(0) and if WTNNC(J)*[YN(J) - YA(J) will be
a term in the Performance Index !INOX
(INTEGER.4).

Appendix A: Parameters - 24

Input Group 8 (Continued)

Neura1.Net Optimisation Parameters Durina the
Controlled Traiectory

Default

Initial
or

Parameter Value Definition -
End Conditrons Vector Sub-Groun (Comnued)

JJECC(J) (Continued)

I 0 [YN(J) - YA(J)] IS NOT an Element of EC(*)
and WTNNC*[YN(J) - YA(J)I2 IS NOT a
term in PINDX.
[YN(J) - YA(J)] IS an Element of EC(*) and
WTNNC*[YN(J) - YA(J)]* IS a term in
PINDX.

> 0

wTNNC(J) 1.o00 Weighting Coef f i c ien t element in the
WTNNC(J)*[YN(J) - YA(J)]* term in the
Performance Index PINDX (REAL* 8).

int Vector Sub-Grwp

AMAXNNC(I,J,K) 100.00 The Least Upper Bounds (1.u.b.) of the Control
Vector Elements (REAL* 8).

CW(I.J,K) I AMAXNNC(I,J,K)

AMINNNC(1,J.K) -100.00 The Greatest Least Bounds (g.1.b.) of the Control
Vector Elements (REAL* 8).

AMINNNC(1,J.K) I CW(I,J,K)

I 1 Index which Specifies the I-th Element Position in
the Origin Vector for the Specific Neural-Network
Layer specified by the index "K" (INTEGER*4).

ICONNNC(1,J.K) 0 Constraint Function Vector Identification Flag.
This flag vector specifies whether or not the Neural-
Signal Weighting Coefficient (Le., CW(I,J,K))
associated with the Entry Si nal XNN(I,J,K) to the

(Origin) Position directed to the J-th Exit
(Destination) Position will be constrained by an
element of the Constraint Function Vector CON (*)
(INTEGERf4). Current Iv NOT an option

I 0 CW(1,J.K) IS NOT Constrained by an

> 0 CW(1,J.K) IS Constrained by an element of

K-th Neural-Net Layer 3 rom the I-th Entry

element of CON (0) .

CON(*).

Appendix A: Parameters - 25

Input Group 8 (Continued)

Neural-Net Optimisation Parameters Durina the
Controlled Traiectorv

Constra int Vector Sub-Group E o ntinued)

J

K

1 Index which Specifies the J-th Element Position
in the Destination Vector for the Specific Neural-
Network Layer specified by the index ' K
(INTEGER*4).

Index which Specifies the K-th Specific Layer in
the Neural-Network (INTEGEW4).

1

ODtimisation Parameters Sub-G r o w

IOPTNNC 0. Gradient Evaluation Option Specification Flag
(INTEG ER*4).

I 0 No Neural-Net Update/Optimisation.
= 1 The Gradients required during the Neural-Net

Update/Optimisation Process are evaluated
using a Finite Differences Method.
The Gradients required during the Neural-Net
Update/Optimisation Process are evaluated

.using an Analytic Method. Currentlv NOT
an ontion

= 2

MITNNNC

OUTNNC

200 The Maximum Number of Optimisation Iterations
allowed before the Optimisation Process is
terminated. (INTEGER'4).

0 The Opt imisat ion I t e ra t i on Output Level
Specification Flag. (INTEGER*4).

= 0 No Optimisation Iteration Information is
written.

= 1 Only the F ina l Optimisation Iteration
Convergence Information is written.

= 2 One Line of Intermediate Optimisation
Iteration Information is written for Each
Iteration.

= 3 Deta i led Intermediate Optimisation
Iteration Information is written for Each
Iteration.

Appendix A: Parameters - 26

~~ ~ ~

~~ ~

InDut GrouD 9

I

Control Optimisation Parameters Durina the
Controlled Traiectorv

Default
or

Initial
Parameter Value Definition

1 Index which Specifies the I-th Element Position in
the Plant Input Vectors (i.e., the Plant Control
Vector) =(I), XD(I,L), and XN(1) (INTEGER*4).

ICV(I) 0 Control Vector Identification Flag. This flag
vector specifies whether or not the I-th Element of
the ActuaWorking Control Vector (e.g., XA(I))
will be an element in the Optimisation Control Vector
CV (0) (INTEGER*4).

I 0

> 0 XA(I) ISan Element of CV(0).

XA(I) IS NOT an Element of Cvioj .

SCVC(l) 1.OOO The Vector of Scalin Coefficients for the
elements of the Actua & orking Control Vector

XA(I)) required by the Optimisation Process [%k* 8).

End Condmo ns Vector Suffi rouD ..
J 1 Index which Specifies the J-th Element Position

in the Plant Output Vectors (Le., the Plant
MeasurementlState Vector) YA(J), YD(J,L), and
Y N(J) (INTEGER*4).

JEC(J) 0 End Conditions Identification Flag. This flag
vector specifies whether or not the J-th Element of
the ActuaVWorking MeasurementEtate Vector
(i.e., Y A (J)) will be an element in the
Optimisation End Conditions Vector ECe) and if
WTC(J)*[YA(J) 2 will be a term in the Performance
Index PINDX I INTEGER.4).

I 0 YA(J) IS NOT an Element of EC(0) and

> 0 YA(J) IS an Element of EC(0) and

WTC*[YA(J)J.' IS NOT a term in PINDX.

WTC*[YA(J)]* IS a term in PINDX.

WTC(J) 1.OOO Weight ing Coef f i c ien t element in the
WTC(J)*[YA(J)]* term in the Performance Index
PINDX (REAL* 8).

Appendix A: Parameters - 27

Input Group 9 (Continued)

Control Optimisation Parameters Durina the
Controlled Traiectorv

Default
or

Initial
Value Definition

-__.-I ~ ~ _._.. __ Parameter
-..----I.-.-.-..

Constraint Vector Sub-G rouD

10.00 AMAXC(I) The Least Upper Bounds (1.u.b.) of the Control
Vector Elements (REAL* 8).

XA(I) I AMAXC(I)

AMINC(1) -10.00 The Greatest Least Bounds (g.1.b.) of the Control
Vector Elements (REAL* 8).

AMINC(1) I XA(I)

I

ICONC(1)

SMAXC(I)

1 Index which Specifies the I-th Element Position in
the Plant Input Vectors (i.e., the Plant Control
Vector) XA(I), XD(I,L), and XN(I) (INTEGER*4).

0 Constraint Function Vector Identification Flag.
This flag vector specifies whether or not the I-th
Element of the ActualMlorking Control Vector
(e.g., XA(I)) will be constrained by an element of
the Constraint Function Vector CON(*)
INTEGER*4).

< 0 XA(I) IS Constrained in an element of
CON(*). Currentlv NOT an option

I 0 XA(I) IS NOT Constrained in an element of
CON(*).

> 0 XA(I) and XA(IARG) ARE Constrained in
an element of CON (0) according to:.

[XA(l)]2 + [XA(IARG)]2 I [SMAXC(l)]2
where: IARG = ICONC(1)

10.00 The Least Upper Bound (1.u.b.) Constraint
Vector for the sum of the squares of t w o
elements of the ActuaVWorking Control Vector
(see ICONC(1)) (REAL* 8).

[XA(l)]2 + [XA(IARG)]2 I [SMAXC(1)]2
where: IARG = ICONC(1)

Appendix A: Parameters - 28

Input Group 9 (Continued)

Control Optimisation Parameters Durina the
Lea rni na Traiectorv

Default

Initial
or

Parameter Value Definition

IOPTC 0 Gradient Evaluation Option Specification Flag
(INTEGER.4).

I 0 No Control Optimisation.
= 1 The Gradients required during the Control

Optimisation Process are evaluated using a
Finite D i r e n c e s Method.

= 2 The Gradients required during the Control
Optimisation Process are evaluated using an
Am!ytk h ? h o d . Currentlv NOT an
S a 2 Q

MITNC

OUTC

200 The Maximum Number of Optimisation Iterations
allowed before the Optimisation Process is
terminated. (INTEGER*4).

0 The 0 pt imisat ion I t erat ion 0 ut put kvel
Specification Flag. (INTEGER*4).
= 0 No Optimisation Iteration Information is

written.
= 1 Only the Final Optimisation Iteration

Convergence Information is written.
= 2 One Line of Intermediate Optimisation

Iteration Information is written for Each
Iteration.

= 3 Detailed Intermediate Optimisation
Iteration Information is written for Each
Iteration.

Appendix A: Parameters - 29

lnternallv Set Parameters
in the

OPTIMNN Code

-Denotes Data Defined by NAMELIST CDATA Input Data read from Subroutine
INIT, or by Directly Read On-Line Test Data, or by Internally
Computed Data. This Data defines the “Actual” (Reference) Plant Input
Vector andlor Output Vector at Specified Trajectory Time Points.

Appendix A: Parameters - 30

lnternallv Set Parameters Grour, A

lnternallv Set Parameters for Traiectory Propaaation

Default
or

Initial
Parameter Value Definition -----

CVUP

DATAR

DELAY

DFREQ

DFREQO

DLGTH

I

Plant Input Vector (Le., the Plant Control Vector)
XA(I) Update Frequency Flag for the Controlled
Trajectory (INTEGER*4).

= 0 Update the Plant Input Vector =(I).
0 Do W Update the Plant Input Vector XA(I).

CVUP = JMOD(ISTEP-1, CVTID)

Data Set Read Flag (INTEGER*4).

= 0 Read Data Set if and only if DELAY .e LSTEP.
f 6 & ‘Not Fiead Ea.& sei*

DATAR = JMOD(ISTEP-1, DFREQ)

&lay Count to: Data Set Read (!NTEGER*4).
= LDELAY During the Learning Trajectory.
= COELAY During the Controlled Trajectory.
1 LSTEP Do a Read Data Set.
< LSTEP Read a Data Set if and only if OATAR = 0.

Data Set Read Frequency After the First Neural-
Net (NN) CW(I,J,K)s Update (INTEGER.4).
= DLFREQ During the Learning Trajectory.
= DCFREQ During the Controlled Trajectory.

Data Set Read Inhibit Flag for the First Read
Attempt during the Learning Phase at the Start of the
Controlled Trajectory (IPHASE = 5) (INTEGERf4).
Currentlv NOT an option
= 0 Do Not Inhibit Data Set Read.
f 0 Inhibit Data Set Read.

Data Sliding Window Length/Size (i.e., the Maximum
Number of Data Sets Contained in a Data Sliding
Window (I NTEG ER*4).

= DLLGTH During the Learning Trajectory.
= DCLGTH During the Controlled Trajectory.

1 Index which Specifies the I-th Element Position in
the Plant Input Vectors (i.e., the Plant Control
Vector) XA(I), XD(I,L), and XN(I) (INTEGER*4).

Appendix A: Parameters - 31

lnternallv Set Parameters Gram A [Continued)

lnternallv Set Parameters for Traiectorv Propaaation

ICUT

IPHASE

Trajectory Phase Cut (Termination) Flag
(INTEGER'4).
= 0 No Cut upon completion of current step.
0 Cut Phase (Terminate Phase) upon completion of

current step.

Trajectory Phase Identification Pointer (INTEGER*4).

= 0 Prior to Start of the Learning Trajectory.
t < TLlNlT

= 1 At the Start of the Learning Trajectory.
t = TLlNlT

= 2 During the Learning Trajectory.
TLlNlT < t < TLFINL

= 3 At Termination of the Learning Trajectory.
t = TLFINL

= 4 Between the Learning & Controlled Trajectories.
TLFINL < t TClNlT

= 5 At Start of the Controlled Trajectory.
t = TClNlT

= 6 During the Controlled Trajectory.
TClNlT < t TCFINL

= 7 At Termination of the Controlled Trajectory.
t = TCFINL

= 8 After Termination of the Controlled Trajectory.
t > TCFINL

ISTEP 0 The Step Number of the Current Trajectory Integration
Step. Note that if: (INTEGER*4).

ISTEPO = 0 and STMODC f 2 or 3, ISTEP is reset
to ISTEP = 1 at the start of the Controlled Trajectory.

ISTEPO # 0 or STMODC = 2 or 3, STEP is reset to
STEP = STEP + ISTEPO at the start of the
Controlled Trajectory.

Appendix A: Parameters - 32

lnternallv Set Parameters Group A [Continued)

lnternallv Set Parameters for Traiectorv Propaaation

L

L1

Def au I t
or

Initial
Parameter Value

J 1

L2

L3

LMAX

LSTEP

1

1

Definition

Index which Specifies the J-th Element Position in
the Plant Output Vectors (i.e., the P l a n t
MeasuremenVState Vector) YA(J), YD(J,L), and
YN(J) (INTEGER*4).

Index which Specifies the L-th Data Set in the Data
Sliding Window (INTEGER*4).

1 I L I LMAX

Index which Assigns the Analytic Modelling
Function for a specific (L3,L2,L1) to either the Plant
Input Vector (i.e., the Plant Control Vector) or the
Plant Output vector (i.e., Piani Measureriienb’Siate
Vector). L1 is the name for the subscript L1 in the
computer code (!F.!ESERf4).
= 1 Specifies that the Model applies to an element of

the Plant Input Vector (i.e., the Plant Control
Vector).

= 2 Specifies that the Model applies to an element of
the Plant Output Vector (Le., Plant
MeasurementlState Vector).

Index which Specifies the Element Number for the
Plant Input Vector (i.e., the Plant Control Vector) if
L1 = 1, or the Plant Output Vector (Le., Plant
MeasurementEtate Vector) if L1 = 2. L2 is the name
for the subscript L 2 in the computer code
(INTEGERf4).

Index which Specifies the Element Number of the
Analytic Madelling Function for a specific (L2,Ll). L3
is the name for the subscript L3 in the computer code
(INTEGERf4).

The Current Number of Data Sets in the Data
Sliding Window (i.e., the Maximum Value that the index
L can have) (INTEGER.4).

1 S L I LMAX I DLGTH

Data Read Counter Number during the Current
Trajectory (INTEGERf4).

LSTEP = 1 + (ISTEP - l)/DFREQ

Appendix A: Parameters - 33

lnternallv Set Parameters Group A (Continued)

Internally Se t Parameters for Traiectorv Propaaation

LTBL 1 Index which Specifies the LTBL-th Data Set of the
Plant Model Data Table (INTEGER*4).

1 I LTBL I TBLMAX

NNlD

NNUP

NNUPO

T

TABS

Neural-Net (NN) CW(I,J,K)s U p d a t e
Frequencynnhibit Flag (I NTEG ER*4).
= NNLID During the Learning Trajectory.
= NNCID During the Controlled Trajectory.
I 0 Do w Update NN CW(I,J,K)s.
> 0 Update NN CW(I,J,K)s every NNlD times.

Neural-Net (NN) CW(I,J,K)s Update Frequency Flag
(INTEGEW4).

NNUP = JMOD(ISTEP-1, NNID)
= 0 Update NN CW(I,J,K)s.
0 Do w Update NN CW(I,J,K)s.

Neural-Net (NN) CW(I,J,K)s Update Inhibit Flag
(INTEGER*4). Currentlv NOT an OD tion

= 0 Do Inhibit NN CW(I,J,K)s Update at Start of
the Controlled Trajectory.

= 1 Inhibit NN CW(I,J,K)s Update at Start of the
Controlled Trajectory iff a NN CW(I,J,K)s Update
was done at the End of the Learning Trajectory.

Either the Current Absolute Time (TABS) or the
Current Relative Time (TREL) as appropriately
specified by TLTYPE or TCTYPE. If: (REAL*8).
TLTYPE I O during the Learning Trajectory, then:

T = TABS.
TLTYPE > 0 during the Learning Trajectory, then:

T = TREL.
TCTYPE I O during the Controlled Trajectory, then:

T = TABS.
TCTYPE > 0 during the Controlled Trajectory, then:

T = TREL.

Current Absolute Time. Note that if: (REAL*8).

TLTYPE 5 0 during the Learning Trajectory, then:

TLTYPE > 0 during the Learning Trajectory, then:
TABS is measured from TLINIT.

TABS is measured from TINIT + TLINIT.

Appendix A: Parameters - 34

lnternallv Set Parameters Group A (Continued)

lnternallv Set Parameters for Traiectory Prooaaation

Default
or

Initial
Parameter Value

TABS

- TBLMAX

TCUT

- TD(L)

TREL

1

Definition

(Continued)
TCTYPE I 0 during the Controlled Trajectory, then:

TCTYPE > 0 during the Controlled Trajectory, then:
TABS is measured from TCINIT.

TABS is measured from TLRNL + TCINIT.

The Number of Data Sets (i.e.. the Maximum Value
that the index LTBL can have) in the Plant Model
Data Table (INTEGER.4).

1 I LTBL I TBLMAX

Tmjectory CL! (Termination! Time !REAL*8!.

TLTYPE I O during the Learning Trajectory, then:
TCUT is the vahe af the Absolute Time (Le., the
value of TABS) specified by TFINL.

TCUT is the value of the Relative Time (i.e., the
value of TREL) specified by TFINL.

TCUT is the value of the Absolute Time (Le., the
value of TABS) specified by TFINL.

TCUT is the value of the Relative Time (Le., the
value of TREL) specified by TFINL.

TLTYPE > 0 during the Learning Trajectory, then:

TCTYPE 5 0 during the Controlled Trajectory, then:

TCTYPE > 0 during the Controlled Trajectory, then:

Either the Absolute Time (TABS) or the Relative
Time (TREL) as appropriately defined by TLTYPE or
TCTYPE corresponding to the "Actual" (Reference)
Plant Model defined in the L-th Data Set in the Data
Sliding Window (REAL*8).

Current Relative Time. Note that if: (REAL.8).

TLTYPE 5 0 during the Learning Trajectory, then:

TLTYPE > 0 during the Learning Trajectory, then:

TCTYPE 5 0 during the Controlled Trajectory, then:

TCTYPE > 0 during the Controlled Trajectory, then:

TREL is measured from ZERO.

TREL is measured from TUNIT.

TREL is measured from ZERO.

TREL is measured from TCINIT.

Appendix A: Parameters - 35

lnternallv Set Parameters Group A (Continued)

lnternallv Set Parameters for Traiectorv Propaaation

TSTEP

-0 lTBL(LTBL)

00. XTBL(I,LTBL)

Trajectory Integration Time Step (REALf8).
= TLSTEP During the Learning Trajectory.
= TCSTEP During the Controlled Trajectory.

Either the Absolute Time (TABS) or the Relative
Time (TREL) as appropriately defined by TLTYPE or
TCTYPE corresponding to the “Actual” (Reference)
Plant Model defined in the LTBL-th Data Set of the
Plant Model Data Table used when the “Actual Plant”
is modelled using Routine TSTATE (REAL*8).

The I-th Element of the Input Vector (i.e., the
Control Vector) to the “Actual” (Reference) Plant
Model which is modelled by One of: Routine
ASTATE (i.e., Analytic Trajectory State Synthesis), or
Routine DSTATE (i.e., Trajectory State from On-Line
Test Data), or Routine TSTATE (i.e., Trajectory State
from Stored Data Tables), or Routine USTATE (Le.,
Trajectory State from a User Supplied Model)
(R EAL*8).

The I-th Element of the Input Vector (Le., the
Control Vector) to the “Actual” (Reference) Plant
Model defined in the L-th Data Set in the Data
Sliding Window (REAL*8).

The I-th Element of the Input Vector (i.e., the
Control Vector) to the Neural Network Plant Model
which corresponds to XA(I) (REAL*8).

The I-th Element of the Input Vector (i.e., the
Control Vector) to the “Actual” (Reference) Plant
Model defined in the LTBL-th Data Set of the Plant
Model Data Table used when the “Actual Plant” is
modelled using Routine TSTATE (REAL*8).

The J-th Element of the Output Vector (Le., the
MeasurementlState Vector) from the “Actual”
(Reference) Plant Model which is modelled by One
of: Routine ASTATE (i.e., Analytic Trajectory State
Synthesis), or Routine DSTATE (Le., Trajectory State
from On-Line Test Data), or Routine TSTATE (i.e.,
Trajectory State from Stored Data Tables), or Routine
USTATE (i.e., Trajectory State from a User Supplied
Model) (REAL*8).

Appendix A: Parameters - 36
~

lnternallv Se t Parameters GrouD A (Continued)

lnternallv Set Parameters for Trajectory Propaaation

Def au It
or

Initial
Parameter Value Definition - YD(J,L)

W J)

- YTBL(J,LTBL)

The J-th Element of the Output Vector (Le., the
MeasuremenUState Vector) from the “Actual”
(Reference) Plant Model defined in the L-th Data
Set in the Data Sliding Window (REAL.8).

The J-th Element of the Output Vector (i.e.. the
MeasuremenVState Vector) from the Neural
Network Plant Model which corresponds to YA(J)
(REAL.8).

The J-th Element of the Output Vector (i.e., the
MeasuremenUState Vector) from the “Actual”
(Reference) Plant Model defined in the LTBL-th
Data Set ot the Piant Modei Data Tabie used wnen
the “Actual Planr is modelled using Routine TSTATE
(REAL.8).

Appendix A: Parameters - 37

lnternallv Set Parameters Group B

lnternallv Set Parameters for Neural Network Operation

Def au It
or

Initial
Value

_-____I_---__.
Parameter _- ~

I 1

J

K

UN N (J , K)

XNN(I ,J,K)

Y NN(J, K)

1

1

Definition

Index which Specifies the I-th Element Position in
the Origin Vector for the Specific Neural-Network
Layer specified by the index “ K (INTEGER*4).

Index which Specifies the J-th Element Position
in the Destination Vector for the Specific Neural-
Network Layer specified by the index “K”
(INTEGER*4).

Index which Specifies the K-th Specific Layer in
the Neural-Network (INTEGER*4).

Input Signal to the Pass-Through Function (Node
Filter) at the J-th Exit (Destination) Position of
the K-th Neural-Net Layer (REAL*8).

UNN(J,K) = CW(I, J,K) * XNN(I, J,K)
I

Entry Si nal to the K-th Neural-Net Layer from

Exit (Destination) Position. (REAL*8).
the I-th P ntry (Origin) Position directed to the J-th

Exit Signal from the J-th Exit (Destination)
Position of the K-th Neural-Net Layer (REAL*8).

Appendix A: Parameters - 38
~~

lnternallv Set Parameters Group C

Internally Set Parameters for the Opt imisation

Default

Initial
Parameter Value

or

CMAXC(I1)

CMAXNNC(IJK)

CMAXNNL(I JK)

CMINC(I I)

CMINNNC(1JK)

CMINNNL(IJK)

CON(.)

Processes

Definition

The Vector of 1.u.b. Values corresponding to the
elements of the Optimisation Control Vector
CV(4 set to the value of the appropriate element of
AMAXC(1) for Control Optimisation during the
Controlled Trajectory Phase. (REAL* 8).

The Vector of 1.u.b. Values corresponding to the
elements of the Optimisation Control Vector
CV(0) set to the value of the appropriate element of
AMAXNNC(1,J.K) for Neural-Net Optimisation
during the Controlled Trajectory Phase.
(REAL* 8).

The Vector of 1.u.b. Values corresponding to the
elements of the Optimisation Control Vector
CV(0) set to the value of the appropriate element of
AMAXNNL(I, J, K) for Neural-Net Optimisation
during the Learning Trajectory Phase. (REAL* 8).

The Vector of g.1.b. Values corresponding to the
elements of the Optimisation Control Vector
CV(.) set to the value of the appropriate element of
AMINC(1) for Control Optimisation during the
Controlled Trajectory Phase. (REAL* 8).

The Vector of g.1.b. Values corresponding to the
elements of the Optimisation Control Vector
CV(0) set to the value of the appropriate element of
AMINNNC(I,J,K) for Neural-Net Optimisation
during the Controlled Trajectory Phase.
(REAL. 8).

The Vector of g.1.b. Values corresponding to the
elements of the Optimisation Control Vector
CV(*) set to the value of the appropriate element of
AMINNNL(I,J,K) for Neural-Net Optimisation
during the Learning Trajectory Phase. (REAL* 8).

The ActuaWorking Constraint Function Vector
(REAL*8).

where denotes IlJK during Neural-Net
Update/Optimisation and 111 during Control
Update/Optimisation.

The ActuaWorking Optimisation Control Vector
(REAL*8).

where denotes IJK during Neural-Net
Updateloptimisation and II during Control
UpdatdOptimisation.

Appendix A: Parameters - 39

lnternallv Set Parameters Group C (Continued)

lnternallv Set Parameters for the Optimisation

CVBDC 0

CVBDNNC 0

Processes

Definition

The Initial Estimate of the Optimisation Control
Vector CV(0) (REAL* 8).

where denotes IJK during Neural-Net
Update/Optimisation and II during Control
Update/Optimisation.

The Control Variable Bounds Specification Flag
for Control Optimisation during the Controlled
Trajectory Phase. (INTEGER*4).

= 0
where denotes II, and if

Both Lower and Upper Bounds (Le., the
CMlNC(0) and CMAXC(*) Vectors) are
specified for All Elements of the Optimisation
Control Vector CV (0) .

All Elements of the Optimisation Control
Vector CV(0) are constrained to be 2 zero.
All Elements of the Optimisation Control
Vector CV(0) are constrained to be I zero.
Both Lower and Upper Bounds (Le., the
CMlNC (0) and C M AXC (0) Vectors) are
specified for All Elements of the Optimisation
Control Vector CV (0) by specifying Only the
First Element of the C M I N C(0) and
CMAXC(0) Vectors (i.e., CMINC(1) and
CMAXC(1). In this case, all other Elements
of the CMlNC(0) and CMAXC(*) Vectors are
internally set Equal to the values of
CMINC(1) and CMAXC(l), respectively.

= 1

= 2

= 3

The Control Variable Bounds Specification Flag
for Neural-Net Optimisation during the Controlled
Trajectory Phase. (INTEGER*4).
= 0 Both Lower and Upper Bounds (Le., the

CMINNNC (0) and CMAXNNC(0) Vectors)
are specified for A l l Elements of the
Optimisation Control Vector CV(*).
All Elements of the Optimisation Control
Vector CV(*) are constrained to be 1 zero.
All Elements of the Optimisation Control
Vector CV(*) are constrained to be I zero.

= 1

= 2

Appendix A: Parameters - 40

~ ~ ~~~

lnternallv Set Parameters GrouD C [Continued)

lnternallv Set Parameters for the ODtimisation
Processes

Default

Initial
or

- Parameter Value Definition
I

CVBDNNC

CVBDNNL

CVSC(I I)

(Continued)

= 3 Both Lower and Upper Bounds (Le., the
CMlNNNC(0) and CMAXNNC(0) Vectors)
are specified for A l l Elements of the
Optimisation Control Vector CVk) by
specifying Only the First Element of the
CMlNNNC(0) and CMAXNNC(0) Vectors
(Le., CYINNNC(1) and CMAXNNC(1). In
this case, all other Elements of the
CMlNNNC (0) and CMAXNNC(0) Vectors are

qua! tz ?he vz!ues of m,,€m:!y set =-**
ctively.

z . 4

CMINNNC(1) and CMAXNNC(1). respe-

0 The Control Variable Bounds Specification Flag
for Neural-Net Optimisation during the Learning
Trajectory Phase. (INTEGER.4).

= 0 Both Lower and Upper Bounds (Le., the
CMINNNL(0) and CMAXNNL(0) Vectors) are
specified for All Elements of the Optimisation
Control Vector CV (0) .

All Elements of the Optimisation Control
Vector CV(0) are constrained to be 2 zero.
All Elements of the Optimisation Control
Vector CV(0) are constrained to be 5 zero.
Both Lower and Upper Bounds (i.e.. the
CMINNNL(0) and CMAXNNL(0) Vectors) are
specified for All Elements of the Optimisation
Control Vector CV(0) by specifying Only the
First Element of the CMINNNL(0) and
CMAXNNL(0) Vectors (i.e., CMINNNL(1)
and CMAXNNL(1). In this case, all other
Elements of the CYINNNL(0) and
CMAXNNL(0) Vectors are internally set Equal
to the values of CMlNNNL(1) and
CMAXNNL(1). respectively.

= 1

= 2

= 3

The Vector of Scaling Coefficients corresponding
to the elements of the Optimisation Control Vector
CV(*) set to the value of the appropriate element of
SCVC(l) for Control Optimisation during the
Controlled Trajectory Phase. (REAL* 8).

Appendix A: Parameters - 41

lnternallv Set Parameters GrouD C (Continued)

lnternallv Set Parameters for the Optimisation
Processes

CVSNNC(IJK) The Vector of Scaling Coefficients corresponding
to the elements of the Optimisation Control Vector
CV(*) set to the value of the appropriate element of
SCVNNC(I,J,K) for Neural-Net Optimisation
during the Controlled Trajectory Phase.
(REAL* 8).

CVSNNL(IJK)

I

ICVDEF

IECDEF

The Vector of Scaling Coefficients corresponding
to the elements of the Optimisation Control Vector
CV(*) set to the value of the appropriate element of
SCVNNL(I,J,K) for Neural-Net Optimisation during
the Learning Trajectory Phase. (REAL* 8).

The ActuaUWorking Optimisation End Conditions
Vector (REAL*8).

where denotes JJJ during Neural-Net
Update/Optimisation and J J during Control
Update/Optimisation

Index which Specifies the I-th Element Position in
the Origin Vector for the Specific Neural-Network
Layer specified by the index "K" (INTEGER*4).

1

The Control Vector Disposition Flag (INTEGER*4).

= 1 Load CV(*) for Neural-Net Optimisation
during the Learning Trajectory Phase.

= 2 Unload CV(*) for Neural-Net Optimisation
during the Learning Trajectory Phase.

= 3 Load CV(*) for Neural-Net Optimisation
during the Controlled Trajectory Phase.

= 4 Unload CV(*) for Neural-Net Optimisation
during the Controlled Trajectory Phase.

= 5 Load CV(*) for Control Optimisation during
the Controlled Trajectory Phase.

= 6 Unload CV(*) for Control Optimisation
during the Controlled Trajectory Phase.

The End Condition Disposition Flag (INTEGER*4).
= 1 Load EC(*) for Neural-Net Optimisation

during the Learning Trajectory Phase.
= 2 Load EC(*) for Neural-Net Optimisation

during the Controlled Trajectory Phase.

Appendix A: Parameters - 42

lnternallv Set Parameters &our, C (Continued)

lnternallv Set Parameters for the ODtimisation
Process eS

Default
or

Initial
Parameter Value

IECDEF

II 0

111

IlJK

IJK

J

JJ

JJJ

K

L

0

0

0

1

0

0

Definition

(Continued)

= 3 Load EC(*) for Control Optimisation during
the Controlled Trajectory Phase.

Subscript/lndex which defines a particular element
of the Optimisation Control Vector CV(*) during
Control UpdaWOptimisation (INTEGER.4).

Subscript/lndex which defines a particular element
of the Constraint Function Vector CON(*) during
Control UpdatWOptimisation jiNTEGER=4 j.

Subscriptnndex which defines a particular eiement
Q! ?!?e Crms!eSnt Fe??ctt!nn Veetar CON!*) during
Neural-Net Update/Optimisation (INTEGER.4).

SubscripUndex which defines a particular element
of the Optimisation Control Vector CV(0) during
Neural-Net UpdatdOptimisation (INTEGER*4).

Index which Specifies the J-th Element Position
in the Destination Vector for the Specific Neural-
Network Layer specified by the index K
(I NTEGER'4).

Subscriptllndex which defines a particular element
of the Optimisation End Conditions Vector
EC(*) during Control Update/Optimisation
(INTEGER.4).

Subscriptnndex which defines a particular element
of the Optimisation End Conditions Vector
EC(*) during Neural-Net Update/Optimisation
(INTEGER'4).

Index which Specifies the K-th Specific Layer in
the Neural-Network (INTEGEW4).

Index which Specifies the L-th Data Set in the
Data Sliding Window (INTEGER'4).

1 I L S LYAX

Appendix A: Parameters - 43

lnternallv Set Parameters Group C (Continued)

lnternallv Set Parameters for the Optimisation
Processes

LMAX 1 The Current Number of Data Sets in the Data
Sliding Window (Le., the Maximum Value that the
index L can have) (INTEGER*4).

1 I L I LMAX I DLGTH

NCONC 0 Total Number of Elements in the ActualMlorking
Optimisation Constraint Function Vector CON(I I I)
(i.e., the Dimension of the ActuaVWorking
Optimisation Constraint Function Vector, NOT to be
confused with the Dimension of the CON(II1) Array)
for Control Update/Optimisation during the
Controlled Trajectory Phase (INTEGER'4).

NCONNNC 0 Total Number of Elements in the ActualMlorking
Optimisation Constraint Function Vector CON(I IJK)
(i-e., the Dimension of the ActuaVWorking
Optimisation Constraint Function Vector, NOT to be
confused with the Dimension of the CON(IIJK)
Array) for Neural-Net UpdatdOptimisation during
the Controlled Trajectory Phase (INTEGER*4).

NCONNNL 0 Total Number of Elements in the ActualMlorking
Optimisation Constraint Function Vector CON(I I JK)
(i.e., the Dimension of the ActuaVWorking
Optimisation Constraint Function Vector, NOT to be
confused with the Dimension of the CON(IIJK)
Array) for Neural-Net UpdatdOptimisation during
the Learning Trajectory Phase (INTEGER*4).

NlCV

NIJKCVC

0 Total Number of Elements in the ActualMlorking
Optimisation Control Vector CV(II) (Le., the
Dimension of the ActuaVWorking Optimisation Control
Vector, NOT to be confused with the Dimension of
the CV(II) Array) for Control UpdatdOptimisation
during the Controlled Trajectory Phase
(INTEGER*4).

0 Total Number of Elements in the ActualMlorking
Optimisation Control Vector CV(IJK) (Le., the
Dimension of the ActuaVWorking Optimisation Control
Vector, NOT to be confused with the Dimension of
the CV(IJK) Array) f o r Neura l -Net
Update/Optimisation during the Control led
Trajectory Phase (INTEGER*4).

Appendix A: Parameters - 44

lnternallv Set Parameters Group C (Continued)

lnternallv Set Parameters for the Opt imisation
Processes

-

Default

Initial
Value Definition

or

~

Parameter

NIJKCVL 0 Total Number of Elements in the ActuaVWorking
Optimisation Control Vector CV(IJK) (Le., the
Dimension of the ActuaVWorking Optimisation Control
Vector, NOT to be confused with the Dimension of
the CV(IJK) Array) tor Neura l -Net
U pdate/Opt i misat i on during the Learn in g
Trajectory Phase (INTEGER*4).

NJEC

NJJECC

NJJECL

0 Total Number of Elements in the ActuaWorking
Optimisation End Conditions Vector EC(JJ) (Le..
the Dimension of the ActuaWVorkinc~ Optimisation End
Conditions Vector, NOT to be confused with the
Dimension of the EC(JJ) Array) for Control
Update/Optimisation during the Control led
Trajectory Phase! (INTEGERc4).

0 Total Number of Elements in the ActuaWorking
Optimisation End Conditions Vector EC(JJJ)
(i.e.. the Dimension of the ActualANorking
Optimisation End Conditions Vector, NOT to be
confused with the Dimension of the EC(JJJ)
Array) for Neural-Net UpdatdOptimisation during
the Controlled Trajectory Phase (INTEGER.4).

0 Total Number of Elements in the ActuaWorking
Optimisation End Conditions Vector EC(JJJ)
(i-e., the Dimension of the ActuaVWorking
Optimisation End Conditions Vector, NOT to be
confused with the Dimension of the EC(JJJ)
Array) for Neural-Net UpdatdOptimisation during
the Learning Trajectory Phase (INTEGER*4).

PINDX O.Oo0 The Performance Index (REAL*B).

PINDX SUMSQ

Appendix A: Parameters - 45

lnternallv Set Parameters Group C (Continued)

lnternallv Set Parameters for the ODtimisation
Processes

Default
or

Initial
Value Definition _.._.._____-_______ ._-_._-____-___-_~-I___..____________.-I-_-_.__..._..__..-. ~ -.._ _____ _._._- _.-. ~

Parameter

SUMSQ O.OO0 Sum of the Product of the Weighting Coefficients
with the Squares of the Elements of the
Optimisation End Conditions Vector E C(.)
(REAL*8).

__..

For Neural-Network Optimisation during the
Learning Trajectory,

LMAX

SUMSQ = WTSNNL(L) * SUMSQW(L)
L = l

Where

SUMSQW(L) = LWTNNL(JJJ) * EC(JJJ) * EC(JJJ)
JJJ

For Neural-Network Optimisation during the
Controlled Trajectory,

LMAX

SUMSQ = WTSNNC(L) * SUMSQW(L)
L = l

Where

SUMSQW(L) = xWTNNC(JJJ) * EC(JJJ) * EC(JJJ)
JJJ

For Control Optimisation during the Controlled
Trajectory Phase,

Appendix A: Parameters - 46

~~ ~

lnternallv Se t Parameters &our, C (Continued)

lnternallv Set Parameters for the Optimisation
Processes

Parameter

SUMSQW(L)

WC(JJ)

WN NC(J J J)

W NNL(J J J)

Default

Initial
Value Definition

or

- -
O.OO0 Sum of the Product of the Weighting Coefficients

with the Squares of the Elements of the
Optimisation End Conditions Vector during
Neural-Net Optimisation EC(0) (REAL*8).

Where

during the Learning Trajectory,

SUMSQW(L) = xWTNNL(JJJ) * EC(JJJ) EC(JJJ)
&I

during the Controlled Trajectory,

SUMSQW(L) = x WTNNC(JJJ) * EC(JJJ) * EC(JJJ)
JJJ

Weighting Coefficient element in the
WC(JJ)*EC(JJ)* term in SUMSQ and the
Performance Index PlNDX (REAL* 8).

Weighting Coefficient element in the
WNNC(JJJ)*EC(JJJ)Z term in SUMSQ and the
Performance Index PINDX (REAL* 8).

Weighting Coefficient element in the
WNNL(JJJ)*EC(JJJ)* term in SUYSQ and the
Performance Index PlNDX (REAL* 8).

Appendix A: Parameters - 47

Internal
Value

0.000

1.0 D-08

1.0 D-06

1.0 D-03

1.0 0-02

0.100

0.200

0.300

0.500

0.800

1 .000

2.000

e

3.000

7r

5.000

27r

8.000

1 o.Oo0

360A27r

1.0 D+02

1.0 D 4 3

1.0 D+06

1.0 D 4 8

lnternallv Set Parameters Group D

lnternallv Set Constants

Internal
Name

ZERO

TENM8

TENMG

TENM3

TENM2

PT100

PT200

PT300

PT500

PT800

ONE

TWO

EBASE

THREE

PI

FIVE

TWOPI

EIGHT

TEN

RTD

TENP2

TENP3

TENPG

TENP8

.--_-.--_I-_-_ Definition

0.000 (REAL*8).

O.OOO,OoO,Ol (REAL*8).

0.000,001 (REAL*8).

0.001 (REAL*8).

0.010 (REAL*8).

0.100 (REAL*8).

0.200 (REAL*8).

0.300 (REAL*8).

0.500 (REAL*8).

0.800 (REAL*8).

1.000 (REAL*8).

2.000 (REAL*8).

e (2.71 8281 82845904523536) (REAL*8).

3.000 (REAL*8).

7r (3.14159265358979323846) (REAL*8).

5.000 (REAL*8).

27r (6.2831 853071 7958647693) (REALf8).

8.000 (REAL*8).

1 O.OO0 (REAL*8).

360/27r Degrees#?adian (REAL*8).

100.OOO (REAL*8).

1 0oo.OOO (R EAL*8).

1 000,OOO.OOO (REAL*8).

1OO,OOO,OOO.OOO (REAL*8).

Appendix A: Parameters - 48

Table of Contents
for the

Principal Routines in the OPTIMNN Code

P a a e l t e m
i Tile page for: Principal Routines in the OPTIMNN Code

iii Table ofContents
V Routines List

Paae of Ro-
1 Routines Group 1 Principal OPTIMNN Peculiar Routines

5 Routine8 Group 2 Principal IMSL MATH/LIBRARY Routines
used by OPTIMNN

6 Routines Group 3 Principal VAWVMS FORTRAN Routines
used by OPTIMNN

I! References

Appendix B: Routines - iii

Routine

ASTATE
ASTATEO1
ASTATE02
ASTATEOS
ASTATEM
ASTATEOS
ASTATEOG
ASTATE07
ASTATRAN
CVVCTR
DABS
DATAN2D
DCOS
DCOSD
DCOSH
DU(P
DFLOTJ
DINT
DLOG
D W l

Paae
1
1
1
1
1
1
1
1
2
2
6
6
6
6
6
6
7
7
7
7

Routine

DMIN1
DMOD
DNCONF
DN40NF1
DNCONG
DNSONGl
DSlGN
DSlN
DSIND
DSQRT
DSTATE
DTAN
DTAND
DTANH
ECVCTR
ERSET
GRADC
GRADW
INlT

Paae
7
8
5
5
5
5
8
8
8
8
2
9
9
9
2
5
2
2
2

Routine
INITDAT
IERCD
JCTRL
JlDlNT
JMAXO
JMOD
JNNW
OPTIMNN
PFNCTOO
PFNCTOl
PFNCT02
PFNCT03
STATE
STATENN
TSTATE
TRAJ
TYPECOM
USTATE
RAN

Paae
2
5
2
9
9
10
2
3
3
3
3
3
3
3
3
3
4
4
10

Appendix B: Routines - v

Appendix B: Routines - vi

~~

Routine

ASTATE

ASTATEOI

ASTATE02

ASTATE03

ASTATEM

ASTATEOS

AST ATE06

ASTATE07

Routines Group 1
Princ ipal OPTIMNN Peculiar Routines

Putpose of Routine

Synthesis of the "Actual" (Reference) Plant Model by
Combining Selected Individual Analytic Models (i.e.,
ASTATEO1 , ASTATE02, ASTATE03, , , , 0) .

The Linear Function (i.e., the Ramp Fundion) Individual Analytic
Model Element defined by:

Y - y , , = A (x - x , ,) + c

The Setpenfine Curve Individual Analytic Model Element defined
by:

The Witch of Agnesi Curve Individual
defined by:

Analytic Model Element

The Inverted Witch of Agnesi Curve Individual Analytic Model
Element defined by:

y - y o = a - .&

The Enveloped Sinusoid function Individual Analytic Model
Element defined by:

y - yo = CExp,[a(x - x, - y)]Cos[nw(x - x, - $11

The Hyperbolic Tangent Function (Le., the Threshold
Function) Individual Analytic Model Element defined by:

y - 4, = CTanh[A(x - x,))]

The Derivative of the Threshold Function (i.e., the Pulse
Function) Individual Analytic Model Element defined by:

y - y , , = ; i ;{CTonh[A(x-x,)# d = ACSech*[A(x-x,)]

Appendix B: Routines - 1

Routines Group 1 (Continued)

Routine

ASTATRAN

CVVCTR

DSTATE

ECVCTR

GRADC

GRADW

INlT

INITDAT

JCTRL

JNNW

Princ ipal OPTIMNN Peculiar Routines

The Uniform Distribution Function Individual Analytic Model
Element defined by:

y - y,, = [A + BUran(lS€€D)] + [C + DUran(JS€ED)]f(x - xo)

where: Uran (0) is the Uniformly Random Distribution Function
such that

-1.00000 5 Uran(*) 5 + 1 . ~ 0 0

f(*) is any of the functions defined by ASTATEO1,

/SEED and JSEED are the seeds required by the

ASTATE02, ASTATEOS, 0 , 0 , 0 , ASTATE07.

VAWVMS System Subroutine RAN (0).

Defines the Control Vector for the Optimisation Processes.

Defines the "Actual" (Reference) Plant Model from On-Line
Test Data.

Defines End Conditions (Conditions-of-Interest during the
Optimisation Process) used to evaluate the Performance Index and
Constraint Functions.

Defines the Analytic Gradient of the Performance Index and
the Constraint Functions with respect to the Control 8s for the
Optimisation Processes.

Defines the Analytic Gradient of the Error Metric and the
Constraint Functions with respect to the Neural-Net Signal
Coefficients WS for the Neural-Net Learning Processes.

Reads the Input Data defined by "NAMELIST CDATA and
then initialises the data for the case to be processed.

FORTRAN Code (m a complete routine) which is included in
the OPTIMNN Peculiar Routine INlT by means of an INCLUDE
Statement to define the initially set Default Values of the
"NAMELIST CDATA" INPUT Parameters and the Values of the
Internally Set Constants of the OPTIMNN System.

Defines the Performance Index and Constraint Functions for
the Control Optimisation Processes.

Defines the Error Metric (Performance Index) and Constraint
Functions for the Neural-Net Learning Processes.

Appendix 6: Routines - 2

~~

Routines Group 1 (Continued)
Principal OPTIMNN Pecul iar Rout ines

Routine Purpose of Routine

OPT1 MNN Main Driver Routine: Executes the Code by first calling
Subroutine INIT to cause the lnput Data defined by NAMELIST
“CDATA” to be read and initialised for the case to be
processed, and then by subsequently calling Subroutine TRAJ
to cause execution of the options and propagation of the
trajectories defined by the input.

PFNCTOO The N H a s s (i.e., the Constant Function) Node Filter Function
defined by:

PFNCTO1 The Dintct-Pass (Le., the Linear Function) Node Filter Function
defined by:

y - y o = A(x-x,) + C

PFNCT02 The Hyperbolic Tangent (Threshold Function) Node Filter
Function defined by:

P FN CT03 The First Derivative of the Hyperbolic Tangent (Pulse
Function) Node Filter Function defined by:

STATE Defines the lnput Vector (Le., the Control Vector) and the
Output Vector (Le., the MeasurementlState Vector) tofirom
the ‘‘Actual” (Reference) Plant at a specific time point by
Selecting the “Actual” (Rehmnce) Plant Model from amongst
Routines ASTATE, DSTATE, TSTATE, and USTATE.

STATENN Defines the Neural-Net State using the Current NN W and
control 8 Values.

TSTATE Defines the “Actual” (Reference) Plant Model from Stored
Data Tables.

TRAJ Propagates (Integrates) the Trajectory by lncrementing
the 7ime.

Appendix B: Routines - 3

Routines Group 1 (Continued)
Principal OPTIMNN Peculiar Routines

TYPECOM FORTRAN Code (m a complete routine) which is included in
the OPTIMNN Peculiar Routines by means of an INCLUDE
Statement to establish and define: 1) the Principal COMMON
Blocks; 2) the Data TYPE of the Principal Parameters, Arrays,
and Vectors; and 3) the DIMENSION of the Principal Arrays
and Vectors of the OPTIMNN System.

USTATE Defines the “Actual” (Reference) Plant Model from a User
Supplied Model.

Appendix B: Routines - 4
~

Routines Group 2
Principal IMSL MATHILIBRAR Y Routines

used bv OPTIMNN

Routine Purpose of Routine -

DNCONF IMSL MATHLIBRARY Routine which solves a general non-linear
programming problem using a successive quadratic programming
algorithm and a finitedifference approximation gradient. See pages
895902 in Chapter 8 of Reference D-3

DN40NF1 M d i i IMSL MAMIBRARY DN40NF Routine which is called
during the computation process initiated when the IMSL
MATWLIBRARY Routine DNCONF is called. DN40NF was
m o d i i to provide better mathematical conditioning for the controller
problems considered.

DNCONG IMSL MATHLIBRARY Routine which solves a general non-linear
programming problem using a successive quadratic programming
algorithm and a user-supplied (analytic) gradient routine. See
pages 903-908 in Chapter 8 of Reference 0-3

DNSONGl Modified lMSL MATWLiBWFiY Dfi30NG Routine which is called
during the computation process initiated when the IMSL
MATWLIBRARY Routine DNCONG is called. DNSONG was
m o d i to provide better mathematical conditioning for the controller
problems considered.

ERSET IMSL MATHLIBRARY Error Handling Routine which sets actions
to be taken (changes the default actions) when errors occur during
the execution of IMSL MATH/LIBRARY Routines. See pages
1 130-1 134 in Chapter 8 of Reference D-3.

IMSL MATHRIBRARY Error Handling Routine which retrieves the
integer d e defined when an informational error occurs during the
execution of IMSL MATHMBRARY Routines. See pages 1130-
11 34 in Chapter 8 of Reference 0-3.

IERCD

Appendix B: Routines - 5

Routines Group 3

PrinciDal VAWMS FORTRAN Routines
used bv OPTIMNN

DABS Absolute Value VAXNMS FORTRAN Double Precision Intrinsic
Function.

Y = DABS(ARG) = Abs(ARG) = IARGl

where: Y is REAL*8, ARG is REAL*8

DATAN2D Arc Tangent VAXNMS FORTRAN Double Precision Intrinsic
Function.

Y = DATAN2D(ARGl/ARGP) + Tan-l(ARGlIARG2)
where: Y is REAL*8, Y is inDearees,

-180 Degrees < Y e +180 Degrees,
ARGl is REAL*8 and ARGl = Sin(Y),
ARG2 is REAL*8 and ARG2 = Cos(Y)

DCOS Cosine VAWVMS FORTRAN Double Precision Intrinsic Function.

Y = DCOS(ARG) = COS(ARG)

where: Y is REAL*8, Y isin Radians,
ARG isREAL*8

DCOSD Cosine (Degrees) VAXNMS FORTRAN Double Precision
Intrinsic Function.

Y = DCOSD(ARG) = COS(ARG)

where: Y is REAL*8, Y is in &&gees,
ARG is REAL*8

DCOSH Hyperbolic Cosine VAWVMS FORTRAN Double Precision
Intrinsic Function.

Y = DCOSH(ARG) = COSh(ARG)
where: Y is REAL*& ARG is REAL*8

DEXP Exponential VAXNMS FORTRAN Double Precision Intrinsic
Function.

Y = DEXP(ARG) = Exp,(ARG)
where: Y is REAL*8, ARG is REAL*8

Appendix B: Routines - 6

Routines Group 3 (Continued)
PrinciDal VAWVMS FORTRAN Rout ines

used bv OPTIMNN

Routine Purpose of Routine

DFLOTJ /NTEGER*Q to REAL*8 Conversion VAWVMS FORTRAN
Double Precision Intrinsic Function. This function converts the
INTEGER'4 argument to the floating point REALf8 equivalent
which is returned as the function value.

Y = DFLOTJ(IARG) = Flmt(lARG)
where: Y is REAL*8, IARG is INTEGER*4

DINT Truncation (REALQI to REAL*) V W M S FORTRAN Double
Precision Intrinsic Function This function converts the floating point
REAL*8 argument ARG to the truncated floating point REAL*8 Y
which is returned as the function value. Y is defined as the largest
integral value whose magnitude does not exceed the magnitude of
AWG and -&mse sign is !he same BP thlt nf ARG. For example,
DINT(7.9) equals 7.000 and JIDINT(-7.9) equals -7.000.

where: Y is REAL*8, ARG is REAL.8,
Y = DINT(ARG) = Tiiiri(ARG)

Tmnc(.) is the Tmncaiion Fumfh.

DLOG NatUf8/ Logarithm VAWMS FORTRAN Double Precision
Intrinsic Function.

Y = DLOG(ARG) = La(ARG) = Ln(ARG)
where: Y is REAL*8, ARG is REAL*8

DMAXl selection of Maximum VAXNMS FORTRAN Double Precision
Intrinsic Function. This function returns the value of the argument in
the argument list (ARG1, ARG2, ARG3, , , , 0) which has the
greatest value. There must be at least two arguments in the
argument l i .

Y = DMAXl(ARG1, ARG2, ARG3, 0 , 0 , 0 , 0)

where: Y isREAL*8,
ARG1, ARG2, ARG3, 0 , 0 , 0 , are REAL*8

DMlNl Se/ection of Minimum VAWVMS FORTRAN Double Precision
Intrinsic Function. This function returns the value of the argument in
the argument list (ARG1, ARG2, ARG3, , , , 0) which has the
least value. There must be at least two arguments in the argument
list.

Y = DMINl(ARG1, ARG2, ARG3, 0 , 0 , 0 , 0)

where: Y is REAL*8,
ARG1, ARG2, ARG3, 0 , 0 , 0 , are REALf8

Appendix B: Routines - 7

Routines Group 3 (Continued)
Principal V A W MS FORTRAN Routines

used bv OPTIMNN

DMOD Remainder VAWVMS FORTRAN Intrinsic Function. This function
returns the remainder when the first argument is divided by the
second.

Y = DMOD(ARGl,ARG2)

Y = ARGl - ARG2*Trunc(ARGl/ARG2)

Y = ARGl - ARG2*DlNT(ARGl/ARG2)

where: Y is REAL*8,
ARGl is REAL*8,
ARG2 is REAL*8

Twnc(*) is the Truncation Function.

DSIGN Trcmsfer of Sign VAXNMS FORTRAN Double Precision Intrinsic
Function. This function assigns the sign of the second argument
(ARG2) to the absolute value of the first argument (ARG1).

Y = DSIGN(ARG1 ,ARG2) = IARGlI*Sgn(ARG2)

where: Y is REAL*8,
ARGl is REAL*8, ARG2 is REAL*8

DSlN Sine VAWVMS FORTRAN Double Precision Intrinsic Function.
Y = DSINiARG) = Sin(ARG)

where: Y is REALf8, Y isin Radim,
ARG is REAL*8

DSIND Sine (Degrees) VAXNMS FORTRAN Double Precision Intrinsic
Function.

Y = DSIND(ARG) = Sin(ARG)
where: Y is REAL*8, Y is inPearees.

ARG is REAL*8

DSQRT Square Root VAWVMS FORTRAN Double Precision Intrinsic
Function.

Y = DSQRT(ARG) = a
where: Y is REAL*8,

ARG is REAL*8, ARG 2 O.OOOOO

Appendix B: Routines - 8

Routines Group 3 [Continued)
Principal VAWVMS FORTRAN Rout ines

used bv OPTIMNN

Routine Purpose of Routine

DTAN Tangen2 VAXNMS FORTRAN Double Precision Intrinsic Function.

Y = DTAN(ARG) = Tan(ARG)
where: Y is REAL.8, Y is in Radians,

ARG is REAL*8

DTAND TengenZ (Degrees) VAXNMS FORTRAN Double Precision
Intrinsic Function.

Y = DTAND(ARG) = Tan(ARG)
where: Y is REAL.8, Y isin-,

ARG is REAL*8

DTANH Hypefbo/ic T8ngmZ VAXNMS FORTRAN Double Precision
intrinsic Functitxr.

Y = DTANH(ARG) = Tanh(ARG)
where: Y is REAL.8, ARG is REAL*8

JlDlNT Truncation (REAL *8 to INTEGER*4 Conversion) VAWVMS
FORTRAN Double Precision Intrinsic Function This function
converts the floating point REAL.8 argument ARG to the truncated
INTEGER*4 IY which is returned as the function value. IY is
defined as the largest integer whose magnitude does not exceed
the magnitude of ARG and whose sign is the same as that of ARG.
For example, JIDINT(7.9) equals 7 and JIDINT(-7.9) equals -7.

IY = JIDINT(ARG) = Trunc(ARG)
where: IY is INTEGER.14, ARG is REAL*8,

Trunc(*) is the Tmncation Function.

JMAXO selection of Maximum VAWVMS FORTRAN Intrinsic Function.
This function returns the value of the argument in the argument list
(IARG1, IARG2, IARG3, a, 0 . 0 , 0) which has the greatest value.
There must be at least two arguments in the argument list.

IY = JMAXO(IARG1, IARG2, IARG3, *, 0 , 0 , 0)

where: IY is INTEGER*4,
IARG1, IARG2, IARG3, 0 . 0 , 0 , are INTEGER*4

Appendix 8: Routines - 9

Routines Group 3 (Continued)
Princioal VAWVMS FORTRAN Routines

used bv OPTIMNN

JMOD Rem8inder VAWVMS FORTRAN Intrinsic Function. This function
returns the remainder when the first argument is divided by the
second.

IY = JMOD(IARG1 ,IARG2)

IY = IARG1 - IARG2*Trunc(lARGl/IARG2)

IY = lARG1 - IARG2*(IARGl/IARG2)

where: IY is INTEGER*4,
IARG1 is INTEGER*4,
IARG2 is INTEGERf4

Trunc (0) is the Truncation Function.

RAN Uniformly Distributed Random Number Generator VAWVMS
FORTRAN System Subroutine. RAN is a general random number
generator of the multiplicative congruential type. RAN produces a
Single Precision Floating Point (REAL.4) number that is uniformly
distributed in the range between 0.00000 inclusive and 1.00000
inclusive ([O.OOOOO, 1.00000]) from an input seed (ISEED).

Y = RAN(ISEED) = Urand(lSEED)

where: Y is REAL*4, o.Ooo00 I Y I +1.oO000
GEED is INTEGER*4,

U rand () is the Uniformly Random Distribution function
such that

0.00000 I Urand(0) I +1.00000

Appendix B: Routines - 10

~~
~~

References

1. IMSL MATHILIBRARY User’s Manual, FORTRAN Subroutines for
Mathematical Applications, Version 1. I, Volume 1, MALB-USM-
UNBND- EN8908-1.1, August 1989

2. IMSL MATH/LIBRARY User’s Manual, FORTRAN Subroutines for
Msthemstiwl Applications, Version 1.1, Volume 2, MALB-USM-
UNBND- EN8901-1.1. January 1989

3. IMSL MATHLIBRARY User’s Manual, FORTRAN Subroutines for
Mathematical Applicstions, Version 1.1, Volume 3, MALB-USM-
UNBND- EN8901-1.1, January 1989

4. Progrsmming in V U FORTRAN, Softwate Version: V4.0, VAWVMS
Manual No AA-DOND-TE, Digital Equipment Corporation (DEC), Maynard,
Mass, September 1984

Appendix 8: Routines - 11

Appendix B: Routines - 12

~

Appendic C - ii

I

I

$ASSIGN sys$ccMMAND: S Y s s m
$ ASSIGN s y s $ m FOR005
$ ASSIGN sys$ovrwr FOR006
$ SET TERM/WIDTH=80
$ SET VERIFY
s SET NOVERIFY
$!
$! ***** OPTfM CCMMAND PROCEDURE: 0Pl'IM.CaM **e**

$!
$! O N w A R " G T H E N G o T 0
$! mERRoRlnENm
$! msEvERET"coTo
$!
$ START:
$!
$ INpuIRE EXPRAA 'Fxpress to RUN OPTIM"? (Y/N)'
s IF EXF'RAA - 4 s . 'N' THEN GOTO EXPROl
s GOM EXPRO4
$ EXPROl:
$ INQUIRE EXPlU3B 'Express to LINK OPTIM"? (Y/N)'
$ IF EXPRBB .4S. "N' THEN Gon> TYPE01
$ GOTO EXPRO3
$!
$ TYPEO1:
$ INQUIRE TYF'EAA 'TYPE a File? (Y/N)'
$ IF TYPEW .4S. 'N" GOTO EDITOl
$!
$ ***** -E 2 File *****
$!
$ INQUIRE TYPEBB 'ENTER NAME of File to be TYPED."
S CN ZRiiOfi TiB< Go?3 TYPE02
$ TYPE 'TYPEBB'
$ GUT0 TWEO1
$ TYPE02:
$ WRITE sYS$oUTHIT = =
$
5 WRITE sYS$OvrFuT -
$ GOM TYPE01
$!
$ EDITOl:
$ INQUIRE EDITAA 'EDIT a File? (Y/N)'
$ IF EDITAA . as . 'N' THEN GOTO CMPLO1
$!

EDIT a File ***** $! **e**

$!

WRITE SYSSOUTPUT 'ERROR specifying File to be TYPED; Try Again."

$ INQUIRE EDITBB "ENTER NAME of File to be EDITED.'
$ ON ERROR THEN Gore EDIT02
$ EM' 'EDITBB'
$ GOM F'IJRGE14
$ EDITO2:
$ WRITE sYS$CuTPUT
$
$ WRITE sYs$ouTPuT -
$ GOTO EDITOl
$!
$ CMPLOl:

WRITE SYS$(KpppvT "ERROR Specifying File to be EDITED; T r y Again.'

$ INQUIRE C M P W "COMPILE a File? (Y/N).
s IF (LMPLAA .as. 'No OOTO LINK01

$! ***** COMPILE a File *****

$ INQUIRE CMPLBB 'DJTEl7 NAME of File to be COMPILED."
$ INQUIRE CMPLCC "COMPILE a FORTRAN File? (Y/N)"
$ IF CMPLCC .EQS. "N' THEN GO TO -LO6
$!
$! ***** FQRTRAN Compilation *****
$!
$ INQUIRE CMPLDD 'Specify the /LIST Qualifier? (Y/N).
s IF CMPLDD - 4 s . 'N' THDJ GOTO CMPL03

$!

$!

Appendix C: OPTIMNN.COM - 1

$ INQUIRE CMPLEE "Specify the /SHOW=INCLUDE Qualifier? (Y/N)"
$ IF CMPLEE .EQS. "N" THEN GOT0 CMPL02
$
$! FOR/LIST/SHOW=INCLUDE/CROSS-REFEE 'CMPLBB' .MR
s FOR/LIST/SHOW=INCLUDE/CROSS-REFERENCE/NOWARNINGS 'CMPLBB' .FOR
$ GOT0 PURGEOl
$ CMPL02:
$
$! FOR/LIST/CROSS-REFERENCE 'CMPLBB' .FOR
$ FOR/LIST/CROSS-REFEE/NCWARNINGS 'CMPLBB'.MR
$ GOT0 PURGEOl
$ CMPL03:
$ INQUIRE CMPLFF "Specify the /SHOW=INCLUDE Qualifier? (Y/N)"
$ IF CMPLFF .EQS. "N" "HEN GOT0 CMPLOI
$
$! FOR/SHOW=INCLUDE 'CMPLBB'.FOR
$ FOR/SHOW=INCLUDE/NCWAFWINGS 'CMPLBB' .FOR
$ GOT0 PURGE01
$ CMF'LOI:
$ ON ERROR THEN GOTO CMPL05
$! FOR 'CMPLBB' .FOR
5 FOR/"INGS 'CMPLBB'.FOR
$ GOT0 PURGEOl
$ CMPL05:
$ WRITE SYS$OUTpuT " "
$ WRITE SYS$OUTPUT "ERROR in FORTRAN Compilation."
$ WRITE SYS$OUTF'UT " "
$ GOT0 TYPEOl
$!
$! ***** C Compilation *****
$!
$ CMPL06:
$ INQUIRE CMPLGG "Specify the /LIST Qualifier? (Y/N)"
$ IF CMPLGG .EQS. "N" THEN GOT0 CMPL08
$ INQUIRE CMPLHH 'Specify the /SHOW=INCLUDE Qualifier? (Y/N)"
$ IF CMPLHH .EQS. "N" THEN GOT0 CMPL07
$
5 CC/LIST/SHOW=INCLUDE/CROSS-REFERENCE 'CMPLBB' .C
$ GOT0 PURGEOl
$ CMPL07:
$
5 CC/LIST/CROSS-REFERENCE 'CMPLBB'.C
$ GOT0 PURGEOl
$ CMPL08:
$ INQUIRE CMPLII "Specify the /SHOW=INCLUDE Qualifier? (Y/N)"
$ IF CMPLII .EQS. "N" THEN GOT0 CMPLO9
$
$ CC/SHOW=INCLUDE 'CMPLBB'.C
$ GOT0 PURGEOl
$ CMPL09:
$
$ CC 'CMPLBB' .C
$ CMPL10:
$ WRITE SYS$OUTPUT " "
$ WRITE SYS$OUTPUT "ERROR in CC Compilation."
$ WRITE SYS$OUTPUT " "
$ GOT0 TYPEOl
$!
$ PURGEOl:
$ INQUIRE PURGEAA "Automatic PURGE? (Y/N)'
$ IF PURGEAA .EQS. "N" THEN GOT0 (IMPLO1
$!
$! ***** Automatic PURGE of Previous Files *****
$!
$ IF CMPLCC .EQS. "N" THEN GO TO PURGE05
$ INQUIRE PURGEBB "PURGE .FOR Files? (Y/N)"
$ IF PURGEBB .EQS. 'N" THEN GOT0 PURGE02
$!
$! * * * * * PURGE .FOR Files *****

ON ERROR THEN GOT0 CMPLOS

ON ERROR THEN GOT0 CMPL05

ON ERROR THEN GOT0 CMPL05

ON ERROR THEN GOT0 CMPL10

ON ERROR THEN GOTO CMPL10

ON ERROR THEN GOT0 CMPLlO

ON ERROR THEN GOT0 CMPLlO

Appendix C: OPTIMNN.COM - 2

$!
$ DIR 'CMPLBB'.FOR
$ INQUIRE IERSAA "Are There E x A n Y Versions 1, 2, 3 , and 43 (Y/N)'
$ IF VERSAA .EQS. 'N' vEX.So1
$ DELETE '(IMPLBB'.FOR;1
$ RENAME 'CMPLBB'.FOR;4 'CMPLBB'.FOR;l
$ DELETE 'CMPLBB' .FOR;2
$ DELEI'E 'CMPLBB' .FQR; 3
$ COPY 'CMPLBB'.FOR;l 'CMPIBB'.FOR;2
$ COPY 'CMPLBB'.FOR;l 'CMPLEB'.FOR;3
$ GOTO PURGE02
$ -01:
$ WRITE sYS$ovrPvr = =
$ WRITE SYS$OUPUT 'PURGE NOT Executed for ',CMPLBB.".FOR Files.'
$ WRITE sYS$oVrwr "
$ PURGE02:
$ DIR 'CMF'LBB' .FOR
$ INQUIRE PURGECC 'Continue? (Y/N) "
$ IF PURGECC .EQS. 'N" THEN COT0 PURGE03
$ GOTO PURGE04
$ PURGE03:
$ WRITE syssarrwr - -
$ WRITE slS$cwrpVr "Pause 7 Seconds. -
$ WRITE sYS$oVrwr -
$ WAIT 00:00:07
$ PURGEO4:
$ IF CMF'UD .a. 'Nu THEN Go?y) PURGE11
s Gcx! ~"F.~!X!
$ PURGEOS:
$ INQUIRE PUW;EDD 'PURGE .C Files? (Y/N)"
5 IF FGXGEEij .=S. 'N' "€Et: G3T3 Fm!X!X
$!

$!
$ DIR 'CMF'LBB' .C
$ INQUIRE VERSBB 'Are There ExAcnY Versions 1, 2, 3 , and 4? (Y/N) =
$ IF VERSBB .EQS. 'N' THEN WKl VERSO2
$ DELETE 'CME'L,BB' .C; 1
$ RENAME 'CMPLBB' .C;4 'CMPLBB' .C;1
$ DELETE 'CMPLBB' .C;2

$ COPY 'CMPLBB'.C;l 'CMPLBB'.C;2
$ COPY 'CMPLBB'.C;l 'CMPLBB'.C;3
$ GOTO PURGE06
$ vERs02:
5 WRITE suS$Ovmrr =
$ WRITE SYS$OUTPWF "PURGE NOT Executed for ",CMPLBB,'.C Files."
$ WRITE sys$arrwr -
$ PURGE06:
$ DIR '(MPLBB'.C
$ INQUIRE PURGEEE "Continue? (Y/N) "
$ IF FUR- .EQS. 'N' "HRi GOTO PURGE07
$ GOTO PURGE08
$ PURGE07:
$ WRITE SYS$arrPuT =
$ WRITE SYS$ouTPvT 'Pause 7 Seconds."
$ WRITE sYS$OvTPuT " "
$ WAIT 00:00:07
$ IF CMPLGG .EQS. 'N' THR4 GOTO PURGE11
$ PURGEOB:
$ INQUIRE PURGEFF 'PURGE .LIS Files? (Y/N)"
$ IF PURGEFF .EQS. 'N' T" GOTO PURGE09
$!
$! ***** PURGE .LIS Files *****
$!
$ DIR ' CMPLBB ' . LIS
$ INQUIRE VERSCC 'Are There EXACTLY Versions 1, 2, 3 , and 4? (Y/N)"
$ IF VERSCC .EQS. "N' THEN GOTO VERSO3
$ DEJXI'F, 'CMPLBB' .LIS;l

$! ttttt .C Files ttttt

$ DEL4ErE 'CMPLBB' .c; 3

Appendix C: OPTIMNN.COM - 3

s RENAME 'CMPLBB'.LIS;4 'CMPLBB'.LIS;l
s DELETE 'CMF'LBB'.LIS;2
s DELETE 'CMPLBB'.LIS;3
s COPY 'CMPLBB'.LIS;l 'CMPLBB'.LIS;2
s 'COPY 'CMPLBB'.LIS;l 'CMPLBB'.LIS;3
s GOTO PURGE09
$ VERS03:
s WRITE SYSSOUTPUT " "
s WRITE SYSSOUTPUT "PURGE NOT Executed for ",CMPLBB,".LIS Files."

$ PURGE09 :
s DIR 'CMF'LBB'.LIS
s INQUIRE PURGEGG "Continue? (Y/N)"
s IF PURGEGG . a s . "N" THEN GOTO PURGElO
s GOTO PURGE11
S PURGElO:
s WRITE SYSSOUTPUT " "
s WRITE SYSSOUTPUT "Pause 7 Seconds."
s WRITE sYS$OUTPuT " "
s WAIT 00:00:07
$ PURGE11 :
s INQUIRE PURGE" "PURGE .OW Files? (Y/N)"
s IF PURGE" .EQS. "N" THEN GOTO PURGE12

$! ***** PURGE .OW Files * * * * *

s DIR 'CMPLBB' . O W
s INQUIRE VERSDD "Are There EXACLY Versions 1, 2 , 3, and 4 ? (Y/N)"
s IF VERSDD .mS. "N" THEN GOT0 VERSO4
s DELETE 'CMPLBB'.OW;l
s RENAME 'CMPLBB'.OW;4 'CMPLBB'.OBJ;l
s DELETE 'CMPLBB' .OW;2
s DELETE 'CMPLBB' . O W ; 3
s COPY 'CMPLBB'.OEJ;l 'CMF'LBB'.OBJ;2
s COPY 'CMF'LBB'.OW;l 'CMPLBB'.OW;3
s GOTO PURGE12
$ VERS04:
s WRITE SYS$OUTPUT " "
s WRITE SYSSOUTPUT "PURGE NOT Executed for ",CMPLBB,".OW Files."
s WRITE SYSSOUTPUT "
$ PURGE12 :
s DIR 'CMPLBB' . O W
s INQUIRE PURGEII "Continue? (Y/N)"
s IF PURGEII .EQS. "N" THEN GOTO PURGE13

$ PURGE13 :
s WRITE SYSSOUTPUT " "

s WRITE SYSSOUTPUT "Pause 7 Seconds."
s WRITE SYSSOUTPUT " "
s WAIT 00:00:07
s GOT0 CMPLOl
$ PURGE14 :
s INQUIRE PURGESJ "Automatic PURGE of Compile-Only File? (Y/N)"
s IF PURGEJJ . 4 S . "N" THEN Cxm, PURGE15
S !
$! * * * * * Automatic PURGE of "Compile-Only" File * * * * *
S !
s DIR ' EDITBB '
s INQUIRE VERSEE "Are There EXACTLY Versions 1, 2, 3, and 4? (Y / N) "
s IF VERSEE .EQS. "N" THEN GOT0 VERSO5
s DELETE ' EDITBB ' ; 1
s FtENAME ' EDITBB' ; 4 'EDITBB' ; 1
s DELETE ' EDITBB ' ; 2
s DELETE ' EDITBB ' ; 3
s COPY 'ED1TBB';l 'ED1TBB';Z
s COPY 'ED1TBB';l 'EDITBB';3
s GOTO PURGE15
$ VERS05:
s WRITE SYSSOUTPUT " "

s WRITE SYSSOUTPUT " "

S !

S !

s GOT0 CMPLOl

Appendix C: OPTIMNN.COM - 4

$ WRITE sYS$orrrWr 'PURGE NOT Executed for ',EDITBB,' Files."

$ PURGE15:
$ DIR ' EDITBB '
$ INQUIRE PVRGEKK "Continue? (Y/N).
$ IF puRGw(.EQS. "N" THEN GOTO PURGE16
$ m EXPRO2
$ PURGEJ.6:
$ WRITE sYs$ouTm " -
$ WRITE sYSSavrpVr 'Pause 7 Seconds."
$ WRITE syssavrpvr " "
$ WAIT 00:00:07
$ EXPROZ:
$ =IRE .Ekpress to RUN OETIM"? (Y/N).
$ IF MPRCC .EQS. 'N' GOIO TYPE01
$ Go -04
$!
$ LINK01:
$ INQUIRE LINKAA "LINK the OFTIMNN Code? (Y/N)"
$ IF LINKAA .EQS. "N" THEN GOTO RUNOl
$!
$! ***** LINK the OPTIMNN Routines *****
$!
$ MpR03:
$ INQUIRE LINKBB 'LINK with IMSL Optbnisation System? (Y/N)"
$ IF LINKBE .EQs. 'N" THEN GoM LINK03
$ INQUIRE LINKCC "LINK with / M A P / C R O S S - m E Qualifiers? (Y/N)'
.$ IF LEXCC .EQS. 'M" 'I" lsTNUO2
$!
$! ***** LINK Code with the I!tSL Shared Library and the
$ 1 /?rS.?lrp.~SS-?-~-~~ Q2al ifi ers
$!
$
$! LINK/MAP/CROSS-REERDJCE OFTIMNN, INIT, TRAJ. -
$! m. JCTRL, CWCPR. ECVCTR, STATE", PF"00.-
$! PFTC"O1, PMCTOZ, PFNCT03, STATE, ASTATE, ASTATRAN,-
$! ASTATEO1, ASTATEOZ, ASTATE03, ASTATE04, ASI'ATEOS, ASTATEOC, -
$! ASTATE07, DSTAm, TSTATE, USTATE, IMSLIBG_SHARE/OPT
$!
$! ***** LINK Code with the IMSL Static Library and the
$! /MAP/CROSS-REmmNCE Qualifiers
$!
$

$ WRITE sYs$mm " "

c

ON ERROR m GYI'O LINK05

TRAJ, - LINK/MAP / CROSS-REFERENCE OPTIMNN, INIT,
JNNW. JCl'RL, CVVCTR. lXVClX. STATE", PF"00.-
PF"01, PF"02, P F " O 3 , STAm, ASTAm, ASTATRAN,-
ASTATEOl , ASTATEOZ, ASTATE03, ASTATE04, ASTATE05, ASTATEOC, -
ASTATE07, DSTATE, TSTATE, USTATE, lX4ONF1. DNSONG1,-
IMSLIEG-STATIC/OPT. IMSLPSECT/OPT

$ GOTO RUNOl
$ LINKOZ:
$!
5 ! ***** LINK Code with the IMSL Shared Library with NO
$! /MAP/CROSS-REmmNCE Qualifiers
$!
$
$! LINK
$! m, JCTRL, CWcTR. MNCTR. STATE", PFNcT00.-
$! PF"O1, PFNCTOZ, PF"03, STATE, ASTATE, ASTATRAN,-
5 ! ASTATEOl, ASTATEOZ, ASTATE03, ASTATE04, ASTATE05, ASTATE06.-
$! ASTATE07, DSTATE, TSTATE, USTATE, IMSLIBG--/OPT
$!
$! ***** LINK Code with the IMSL Static Library with NO
$! /W/CROSS-REFERENCE qUalif iers
$!
$ LINK

ON ERROR "HEN COT0 LINK05
TRAJ. - OPl'IM", INIT,

TRAJ, - OPTIMNN, INIT,
JNNW. JCI'RL, CWCTR. M-'1IcTR. STATE". PFNCT00,-
P m O l , PFNcM2, PFNcT03, STATE, ASTATE, ASTATRAN,-
ASTATEO1, ASTATEOZ, ASTATE03, ASTATE04, ASTAm05, ASTATE06,-
ASTATE07, DSTATE. "STATE, USTATE, DN4ONF1, cN9ONG1.-

Appendix C: OPTIMNN.COM - 5

IMSLI BG-STATIC / OFT, IMSLPSEcT/ OPT
$ GOTO RUNOl
$ LINK03:
$ INQUIRE LINKDD "LINK with /MAP/CROSS-REFERENCE Qualifiers? (Y/N)"
$ IF LINKDD .EQS. "N" THEN LINK04

$! * **** LINK Code with WAG and the /MAP/CROSS-REFERENCE Qualifiers *****

$

$!

$!

$ LINK/MAP/CROSS-REFERENCE OPTIMNN, INIT, TRAJ. -
ON ERROR 'ITEN GOT0 LINK05

JNNW, JCTRL, CWCTR, ECVCTR. STATE", PFNCT00.-
PFNCTOl, PFNCT02, PFNCT03, STATE, ASTATE, ASTATRAN,-
ASTATEOl, ASTATEO2, ASTATE03, ASTATEO4, ASl'ATEO5, ASTATE06,-
ASTATE07, DSTATE, TSTATE, USTATE, DN4ONFl , DNgONG1, -
WORK. [LEYLAND.OPTIMNN.OPTIMNN1]SRCVLIB.OLB

$ GOTO RUNOl
$ LINK04:
$!
$! ***** LINK Code with WAG with NO /MAP/CROSS-REFERENCE Qualifiers *****
$!
$
$ LINK OPTIMNN, INIT, TRAJ. -

ON ERROR THEN GOT0 LINK05

JNNW, JCTRL, CWCTR, W C T R , STATE", PFNCTO0,-
PFNCTO1, PFNCT02, PFNCT03, STATE, ASTATE, ASTATRAN,-
ASTATEOl, ASTATE02, ASTATE03, ASTATE04, ASTATE05, ASTATEO6,-
ASTATE07, DSTATE , TSTATE , USTATE , DN4ONF1, DN9ONG1, -
WORK. [LEYLAND.OPTIMNN.OPTIMNNllSRCVLIB.OLB

$ GOTO RUNOl
$ LINK05:
$ WRITE SYS$ouTPUT " "
$ WRITE SYS$OUTPuT "ERROR in Linking. Terminate Process. "
$ WRITE SYS$OUTPUT " "
s GO TO TERMINATE
$ RUNO1:
$ INQUIRE RUNAA "RUN OPTIMNN? (Y/N)"
$ IF RUNAA .EQS. "N" THEN GOT0 TERMINATE
$!

$!
$! * * * * * Clear INPUT (FOR007.DAT) and OUTPUT (FOR008.DAT)
$!
$!
$ EXPR04:
$ ON ERROR THEN GOT0 RUN02 .
$ DELETE FOR007.*;*
$ RUN02:
$
$ DELETE FOR008.*;*
$ RUN03:
$!
$! * * * * * COPY INPUT CDATA.DAT File to FOROO7.DAT * * * * *
$!
$
$ COPY CDATA-DAT FOR007.DAT
$ GOM RUN05
$ RUNOI:
s WRITE SYS$OUTPUT .
$ WRITE SYS$OUTPUT "ERROR with the INPUT. Terminate Process."
$ WRITE SYS$OUTPUT " "
$ GOTO TERMINATE
$ RUN05:
$ INQUIRE RUNBB "Delete Previous EDATA.DAT;* OUTPUT Files? (Y/N)"
$ IF RUNBB .EQS. "N" THEN GOTO RUN07

$! t * t * * Delete Previous EDATA.DAT;* OUTPUT Files. * * * * *

$ ON ERROR THEN GOT0 RUN06
$ DELETE EDATA.*;*
$ GOTO RUN07

$! * * e * * RUN OpTI' * * * * *

Data *****

ON ERROR THEN GOT0 RUN03

ON ERROR THEN GOT0 RUN04

$!

$!

Appendix C: OPTIMNN.COM - 6

RUN06 :
WRITE sYS$oVrwr -
WRITE SYS$OUl'F"' 'ERROR Clearing OVrwT (EDATA.DAT;*);-

Continue Process.'
WRITE sYS$cXrrwr ' "

RUN07 :
INQUIRE RUNCC 'TYPE I" Data (CDATA.DAT)? (Y/N)*
IF RUNCC .=. 'N" THEN GOTO RUN09
WRITE sYssavrm =

mTE SYssavrPvr
WRITE sYS$ovrWr 'INPUT Data File CDATA.DAT.-

ON THEN GOTO RUN08
!
! ***** TYPE I" File cDATA.DAT/FoROO7.~T Before becution. *****
I

TYPE FoR007.ART
WRITE sYS$(xlTPuT
WRITE SYSSOurPm
WRITE sYS$OurPm
GOM RUN09

$ RUNOE:
$ WRITE sYS$ovrPvr
$ WRITE sYS$Ovmrr

$ WRITE sYS$ouTPvT
$ GoTOTERtmmTE

Terminate h-ocess:

$ RUNO9:
s ASSIGN ED&TA.EAT
$ WRITE sYS$OuTpvT
$ WRITE sYS$ovrWr
s w.1- SYsss-m-lT

. I

Vhd of Data File CDATA.MT: . .
. .
"ERROR with I" (CDATA.DAT/FoROO7.DAT).-

. I

sYS$wrpvr

'START RUN.'
. I

. .
$ SET TERM/hTLYl¶-I=132
$
$!
$! ***** Execute O P T I M " *****
$!
$ RUN O P T I M "
$!
$ SET TERM/WIDTH=80
$ GoTO RUN11
$ RUN10:
$ SET TERM/hTDlYi=80
$ WRITE sYS$OuTpVr " =
$ WRITE SYS$OUlTVT "INPUT (ERROR in Running OETIMNN. Continue.'
$ WRITE s Y S $ O U " a "
$ RUN11:

$ WRITE sYS$WTwr "END of RUN:

$ DEASSIGN sYS$ovrWr
$
$ DELEXX FOR007.*:*
$ RUN12:
$!
$! FOR008.DAT EDATA.DAT
$ RUN13:
$ INQUIRE RUNDD "TYPE INPVT Data (CDATA-DAT)? (Y/N)"
$ IF RUNDD .4S. "N" THEN GOTO RUN15
$!
$! ***** TYPE I= File CDATA.DAT *****
$!
$ WRITE SYS$oUTFwr " "

$ WRITE sYssmpvT - -
$ WRITE sYS$ouTF"' - "

$ WRITE sYS$Ovmrr .

ON ERROR THEN GOTO RUN10

$ WRITE sYS$WTwr

$ WRITE sYS$WTwr "

CBJ ERROR THEN GOTO RUN12

ON ERROR THEN GOTO RUN13

$ WRITE sYS$OvTpvT "INPUT Data File CDATA.DAT:

$ ON ERROR GOTO RUN14
$ TYPE CDATA.DAT

$ WRITE SYS$OVrpVr "End of INPUT Data File CDATA.DAT:

Appendix C: OPTIMNN.COM - 7

$ GOT0 RUN13
$ R U N l 4 :
$ WRITE SYS$OUTPUT " "
$ WRITE SYS$OUl'PUT "ERROR with INPUT (CDATA.DAT). Continue Process."
$ WRITE SYS$OUTPUT " "
$ GOT0 RUN13
$ RUN15:
$ INQUIRE RUNEE "TYPE OUTPUT Data (EDATA-DAT)? (Y/N)"
$ IF RUNEE .EQS. "N" THEN GOT0 TERMINATE
$!
$! * * * * * TYPE OUTPUT File EDATA.DAT *****
$!
$ WRITE SYS$OUTPUT " "
$ WRITE SYS$OUTPUT "OUTPUT Data File EDATA-DAT."
$ WRITE SYS$OUTF" " "
$ SET TERM/WIDTH=132
$
$ TYPE EDATA-DAT
$ SET TERM/WIDTH=80
$ WRITE SYS$OUTPUT " "
$ WRITE SYS$oVrPUT " m d of OUTPUT Data File EDATA.DAT."
$ WRITE SYS$OUTPUT " "
$ GOT0 RUN15
$ RUN16:
$ SET TERM/WIDTH=80
$ WRITE SYS$OUTPUT " "
$ WRITE SYS$OrrrPUT "ERROR with OUTPUT (EDATA.DAT). Continue Process."
$ WRITE SYS$OUTPUT " '
$ GOT0 RUN15
$!
$ TERMINATE:
$!
$! ***** TERMINATE RUN. * * * * *
$!
$ WRITE SYS$wTPUT " "
$ WRITE SYS$OUTPUT "TERMINATE RUN."
5 WRITE SYS$OUTPUT " "
$ EXIT

ON ERROR THEN GOT0 RUN16

Appendix C: OPTIMNN.COM - 8

C
C
C ***** m e g[LEyLAM).O~IMNNITypEcoM.INC" File is Included here.
C his file contains the statements which establish and define:
C 1) the principal CON Blocks; 2) the Data TYPE of the
C principal Parameters, Arrays, and Vectors; and 3) the
C DIMENSION of the Principal Arrays and Vectors of the
C O P T m " System.
C

C
C
C

INCLUDE ' [LEyLANo.OPTIIY"1lYF'EC~.INc'

Appendix C: TYPECOM.FOR - 1

C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C

C
C
C

C

C

C

C
C
C
C
C

C

C

C
C
C
C
C

C

C

C
C
C
C
C

***** start TYPEcoM.INc *****

***** These statements establish and define: 1) the hrincipal
CClMWN Blocks; 2) the Data TYPE of the Principal Parameters,
Arrays,
Arrays

and Vectors; and 3) the DIMENSION of- the Principal
and Vectors of the OPPIMNN System.

IMPLICIT "E

***** Data Type for the Group 1 Parameters *****

INTEGER*4 NCON, m, NM3, NIDIM. NIJKDIM,
1 NJDIM, NJKDIM, NKDIM, NLlDIM, NL21, NLZDIM,
2 NL321, NL3DIM, NLDM, NLTBL

***** D i m e n s i o n s for Arrays and Vectors *****

pARAMFL%R (NIDIM=16, NJDIM=16, NKDIM=I, NLlDIM=2, NL2DIM=12,
1 >~>I)T,M;?, >?S--=lrnlr. NI.mTs-600\

PARAMETER ("KDIM=NJDIM*NKDIM, NIJWIM=NIDIM*NJDIM"KDIM)

PAWLMETER ~NL21=NL2DIM*NLJDPI, NL321=NL3DIMfNL2DIM*NL1DIM)

***** Data Type, Dimension, and COMMON for the Group 2 Parameters *****

INTM;ER*4 MULT, TBLMAX

REAL*8 coNsT1, ccpJsT2,
1 LARGE3, LARGE4. SMALLl,
2 TINIT . TFINL.
3 XTBL(NLZDIM,NLTBL),
4 YTBL(NL2DIM.NLTBL)

COMUON / GRP2 / CC"1.
1 LARGE2, LARGF3, W E 4 ,
2 TBIMAX. T D , T I N I T ,
3 Y T B L

***** Data Type. Dimension, and C m for the G r o u p 3 Parameters *****

=m*4 DLFREQ, DLLGIII, LDEJAY, " L I D , SIMODL, TLTYPE

REAL*8 TLINIT , TLFINL, m P , WS"L(NLD1M)

CaMElON / GRP3 / DLFREQ, DLIL7E-I. LDELAY, " L I D , SIMODL, T L I N I T ,
1 TLFINL, TLSTEP, TLTYPE. W'lSNNL

***** Data Type, Dimension, and COMMON for the G r o u p 4 Parameters *****

IWEGER'4 CDELAY, CVTID, DCF'REQ, DCLGTH, ISTEPO, NNCID, SIMODC,

Appendix C: TYPECOM.INC - 1

1 "YPE, UPDATE

m * 8 TCINIT, TCFINL, TCSTEP, WTSNNC(NLD1M)
C

C

C

COMMON / GRP4 / CDELAY, CVTID, DCFREQ, DCLGTH, ISTEPO, NNCID,
1 ST'hlOIlC, XINIT, TCFINL, TCSTEP, TCTYPE, UPDATE, WSNNC

***** Data Type, Dimension, and COMMON for the Group 5 Parameters *****

INTEGER*4 "CT (NJDIM, NKDIM) , NI (NKDIM) , NJ (NKDIM) , NK

RERL*8 AN(NJDIM,NKDIM), BN(NJDIM,NKDIM), CN(NJDIM,NKDIM),
1 CW(NIDIM,NJDIM,NKDIM) , DN(NJDIM,NKDIM) , X N O (NJDIM,NKDIM),
2 YNO (NJDIM,NKDIM)

C

C

C

C

C

***** Data Type, Dimension, and COMMON for the Group 6 Parameters * * * * *

INTEXXI7*4 IFTl"(NL3DIM,NL2DIM,NL1DIM) ,
1 ISEEDl(NL3DIM,NL2DIM,NLlDIM), ISEED2(NL3DIM,NL2DIM,NLlDIM),
2 ISEED3 (NL2DIM.NLlDIM) , JSEEDl(NL3DIM,NLZDIM,NLlDIM),
2 JSEEDZ(NL3DIM,NLZDIM,NL1DIM), JSEED3(NL2DIM,NLlDIM).
3 NL2(NLlDIM), NL3 (NLZDIM, NLlDIM)

REALf8
1 A 1 (NL3DIM,NL2DIM,NLlDIM),
2 A3 (NLZDIM.NLlDIM),
3 B (NL3DIM, NLZDIM, NL1DIM) ,
4 B2 (NL3DIM,NL2DIM,NLlDIM) ,
5 C (NL3DIM, NLZDIM, NLlDIM) ,
6 C2 (NL3DIM,NLZDIM,NLlDIM) ,
7 D(NL3DIM,NLZDIM,NLlDIM),
8 D2 (NL3DIM. NL2DIM. NLlDIM) ,
9 NN(NL3DIM,NL2DIM,NLlDIM),
o PERIOD(NL3DIM,NL2DIM,NL1DIM),
1 PHI (NL3DIM,NL2DIM,NLlDIM),

3 YO(NL3DIM,NLZDIM,NLlDIM),
4 YR2 (NL3DIM,NLZDIM,NLlDIM),

2 ?WoPIO,

A(NL3DIM,NLZDIM,NLlDIM),
A2(NL3DIM,NLZDIM,NLlDIM),
ALPHA(NL3DIM,NL2DIM,NLlDIM).
Bl(NL3DIM,NL2DIM,NLlDIM),
B3 (NL2DIM,NLlDIM) ,
Cl(NL3DIM,NL2DIM,NLlDIM),
C3(NLZDIM,NLlDIM),
Dl(NL3DIM,NL2DIM,NLlDIM),
D3 (NL2DIM,NLlDIM),
OMEGA (NL3 DIM, NL2 DIM, NLIDIM) ,
PHASE(NL3DIM,NL2DIM,NLlDIM) ,
PSI (NL3DIM. NL2DIM, NLIDIM) ,
XO(NL3DIM,NL2DIM,NL1DIM),
YR1(NL3DIM,NL2DIM,NL1DIM),
YR3(NLZDIM,NLlDIM)

COMMON / GW6 / A, A I , A2. A3, ALPHA, B.
1 B1, B2, B3, C. c1 I c2 I c3 # D.
2 D1, D2, D3,
3 JSEED2, JSEED3, NL2, NL3, ",
4 PHI, PSI, xo, YO 9

~ m m , ISEEDl, ISEED2, ISEED3. JSEEDl,
OMEGA, PERIOD, PHASE.

YR1. yR2. YR3

* * * * * Data Type, Dimension, and COMMCN for the Group 7 Parameters * * * * *

INTEGER*4 IJKCVL(NIDIM,NJDIM,NKDIM) , JJECL(NL2DIM) ,
1 ICONNNL(NIDIM,NJDIM,NKDIM), IOPTNNL,
2 MITNNNL, OUTNNL

REAL*8 SCVNNL(NIDIM,NJDIM,NKDIM), WINNL(NLZDIM),
1 AMAXNNL (NIDIM, NJDIM,NKDIM) , AMI= (NIDIM,NJDIM,NKDIM)

COMMON/GRP7/ IJKCVL, SCVNNL, JJECL, m. AMAX"L.
1 AMINNNL, ICONNNL, IO-, MITNNNL, OWNNL

***** Data Type, Dimension, and COMMON for the Group 8 Parameters * * * * *

Appendix C: TYPECOM.INC - 2

,

C

C

C
C
C
C
C

C

C

C
C
C
C
C

C

C

C
C
C
C
C

C

C
C
C
C
C

C

C

C
C
C

*e*** m t a Type, Dimension, and CCt" for the Group 9 Parameters

INTB2Eftt4 ICV(NL2DIM), JEC(NL2DIM), ICONC(NL2DIM), IOpIy3.
1 -, (wpc

-*8 SMAXC (NUDIM), WIC (NL2DIM), AMAXC (NL2DM 1 ,
1 AMINC (NL2DIM) , SCVC(NL2DIM)

cxM.IoN/GRPg/ Icv. scvc. JEC, wrc. AMAXC, AMmc,
1 ICONC, SMAXC, IOPrc. MI=. wpc

****. Data T y p e , Dimension, and COMUDN for the G r o u p B Parameters

REAL'8 UNN(NJDIM,NKDIM) , XNN(NIDIM,NJDIM,NKDIM) , Y"(NJDIM,NKDIM)

OXMlN / GRPB / UNN. XNN. YNN

***** Data w. Dimension. and CCM4ON for the Group C Parameters

I"EGER'4 "BDC, CXBmNc, C V B m , ICVDEF. IECDEF.
1 11, 111, IIJK, ISK , JJ, JJJ,
2 "c. NCONNNC. "NNL. NIW. NIJKCVC, NIJKCVL,
3 NJEC. NJm, NJJECL

ttttt

t t t t t

t t t t t

t t t t t

Appendix C: TYPECOM.INC - 3

C
C

C

***** Ehd "YPECOM.INC *****

Appendix C: TYPECOM.INC - 4

C
C
C ***** The "[LEyLAND.OPTIMNN]INITDAT.INC" File is Included here.
C
C set Default Values of the "NAMELIST CDATA" INPUT Parameters
C and the Values of the Internally Set Constants of the OFTIMNN
C System.

This file contains the statements which &fine the initially

L

INCLUDE '[LEYLAND.O~lM"lINITDAT.INC'
c
C
C

Appendix C: INITDAT.FOR - 1

C
C
C
c *****
C
C c *****
C
C
C
C
C
C c *****
C
C
C
C
C c *****
C

DATA
1
2
3

1

3

0

?
A

C
c
C
c *****
C

DATA
1
2

1
2

0

C
C
C c *****
C

DATA
1
2
3

1
2
3

0

C
C c *****
C

DATA
1
2

Start INITDAT.INC *****

These statements define the initially set Default Values of
the "NAMELIST CDATA" INPVT Parameters and the Values of the
Internally Set Constants of the O P T I M " System.

IYLTA Set Values for the G r o u p 1 Parameters *****

N a E

IYLTA Set Values for the G r o u p 2 Parameters *****

CQNSpl,
CONST5 ,
LARGE4 , -.
0.200,
1.500,
1, "12,
1.OD-12,

CONsT3,
LARGE2,
sMALL2.
TINIT,
0.800,
1.0506,
1.OD-06,
0.000,

coNsT4.
LARGE3,
sMALL3.
TFINL /
1.200,
1.0509,
1.OD-09.
0.000 /

DATA Set Values for the G r o u p 3 Parameters *****

DLFREQ, DLLGRI. LDELAY, "LID,
SRIODL , TLINIT, TLFINL, TLSTEP,
T L W E , WrSNNL /

1. 10, 0, 1.
1. 0.000, 0.000, 1.000.
0. NLDIM' 1.00.0 1

DATA Set Values for the G r o u p 4 Parameters *****

CDELAY,
ISTEPO,
mINL.
WrSNNc

0.
1.

0.000,
NLDIM'l. 000

CVTID , DCFREQ. Dc-.
NNCID, m D c . TCINIT,
TCsTEP. TLTYPE , UPDATE,

1. 1. 10.
1. 1, 0.000,

1.000. 0, 1.

/

/

DATA Set Values for the G r o u p 5 Parameters *****

0 NJKDIM*O.500, NJKDIM*O.500, NJKDIM*1.000, NIJKDIM*1.000,
1 NJKDIM*-l.O506, NJKDIM'O, NKDIM' 3 , NKDIM'l,
2 2. NJKDIM*O.OOO, NJKDIM*O.OOO /

C
C
C
C ***** DATA Set Values for the G r o u p 6 Parameters *****
C

PARAMETER (~PI0=6.28318530717958647693D+OO)

Appendix C: INITDAT.INC - 1

C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

DATA A, A1 , A2,
1 ALPHA, B, B1,
2 B3, C. c1 I
3 c3, D, D1,
4 D3, IFUNCT, ISEEDl ,
5 ISEED3, JSEEDl , JSEED2 ,
6 NL2 I NL3, ",
7 PERIOD, PHASE, PHI,
8 xo , YO, YR1,
9 YR3
0 NL321*0.500, NL321*0.000, NL321*0.000,
1 NL321*1.000, NL321*0.500, NL321*0.000,
2 ~~21*0.000, NL321*0.250, NL321*0.000,
3 NL21*0.000, NL321*-1.OD+06, NL321*0.000,
4 NL21*0.000, NL321*0, NL321'78985723,
5 NL21'72919329, NL321'95428381, NL321*68377297,
6 NLlDIM* 1, NL21*1, NL321*1.000,
7 NL321*1.0D+lO, NL321*0.000, NL321'0.000,
8 NL321*0.000, NL321*0.000, NL321*0.000,
9 NL2lfO. 000

***** DATA Set Values for the Grou;, 7 Parameters

DATA IJKCVL, SCVNNL. JJECL,
1 AMAXNNL. AMINNNL, ICONNNL,
2 MITNNNL , OUTNNL
0 NIJKDIM*O, NIJKDIM*1.000, NL2DIM'O.
1 NIJKDIM'100.0, NIJKDIM*-lOO.O, NIJKDIM'O,
2 200, 0

***** DATA Set Values for the Group 8 Parameters

DATA IJKCVC, SCVNNC , JJECC ,
1 AMAXNNC I AMINNNC, ICONNNC ,
2 MITNNNC , OUT"€
0 NIJKDIM*O, NIJKDIM*1.000, NL2DIM*O,
1 NIJKDIM*100.0, NIJKDIM*-100.0, NIJKDIM*O.
2 200, 0

***** DATA Set Values for the Group 9 Parameters

DATA ICV, SCVC # JEC I
1 =c I AMINC, ICONC,
2 1 0 m , MITNC , OUTC
0 NL2DIM*O, NL2DIM*1.000, NL2DIM*O,
1 NL2DIMf10.00, NL2DIM*-10.00, NL2DIM* 0,
2 0, 200, 0

* * * * * DATA Set Values for the Group A Parameters

NONE

***** DATA Set Values for the Group B Parameters

NONE

A3,
B2,
c2,
D2,
ISEED2,
JSEED3,
OMEGA,
PSI,
YR2,

/
NL21*0.000,
NL321*0.000,
NL321*0.000,
NL321*0.000,

NL321'81692875,
NL21*89672847,
NL321*1WoPIO,
NL321*0.000,
NL321*0.000,

/

* ****

w"L,
IO€TNNLl,

NL2DIM*1.000,
0.

/

/

* ****

wr"C,
I O r n C ,

NL2DIM*1.000,
0.

/

/

* ****

WIT,
SMAXC #

NL2DIM*1.000,
NL2DIM*10. 00,

/

/

Appendix C: INITDATANC - 2

c ***** DATA Set Values for the Group C Parameters *****
C

RATA CON, CVBDC, CVBDbJNc, CVBDNNL, PINDX. SUMSQ,
1 SUMSQW /

0.000, 0.000, 0 "*0.000. 0, 0, 0.
1 NLDIM"O.000 /

C
C
C
c *****
C

DATA
1
2
3
4
5
6

1
2
3
4
5
6

0

C
C
c
c *****
C
C
C

DATA Set Values for the Group D Parameters *****

ZERO, m 8 #

-, PTlOO,
PT500, PTBOO,
-,
PI I
TfuPI ,
=2, m 3 #

0.000, 1.OD-OB,
1 - OD-02, 0.100,
0.500 ,. 0.800.

2.71828182845904523536,
3.14159265358979323846,
6.28318530717958647693,
1. oDc02, 1.0~+03,

End INITI1AT.INC *****

m 6 ,
PT200,
ONE,
THREE.
FIVE.
EIGWT,
TENp6,
1.OD-06,
0.200,
1.000,
3.000,
5.000,
8.000,
1.0DC06,

- 8

FT300,
Two,

TEN.
TENP8 /
1.OB-03,
0.300.
2.000,

10.000,
1.0D+O8 /

Appendix C: INITDAT.INC - 3

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
C
C
c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

WAG Name:

computer :

Revised :

Purpose:

Usage :

Arguments:
FCNS -

m -

N
& M A X -

X

-

-

xs
G

DF -

DG -

L D E -

U

XL -

xu -

DCL -

LDDCL -

CD -

C W K -
w -
DEL -

-

-

-

N4CNF/DN40M7 (Single/Double precision version)

CRAY/DouBLE

December 2 , 1985

Main driver for the successive quadratic programing
algorithm.

CALL N4ONF

User-supplied SuBROuTINE to evaluate the functions at
a given point. The usage is
CW FCNS (M, ME, N, X, ACTIVE, F, G), where
M - Total number of constraints. (Input)
ME - Number of equality constraints. (Input)
N - Number of variables. (Input)
X - The point at which the function is evaluated.

! T r i p i t \
X should not be changed by FCNS.

active carstrair?ts. ! Iqmt !

(Output)

constraints at point X. (Output)

ACTIVE - Logical vector of length MMAX indicating the

F

G - Vector of length &!MAX containing the values of

FCNS must be declared MTERNAL in the calling program.
O r d e r of the array DG. (Input)
MKAX must be at least MAX(1,M).
Number of variables. (Input)
Order of DCL where NMAX must be at least MAX(2,N+1).
(Input)
Vector of length N containing the initial guesses to the
solution on input and the solution on output.
(Input /Output)
Vector of length N containing the diagonal scaling
matrix. (Input)
Vector of length M?U containing constraint values.
(Output)
Vector of length N+1 containing the gradient of the
of the objective function. (Output)
Array of dimension MMAX by M A X containing the gradient
of the constraints. (Output)
Leading dimension of DG ewctly as specified in the
dimension statement in the calling program. (Input)
Vector of length M"2 containing the multipliers of the
nonlinear constraints and the bounds.
Vector of length N containing the lower bounds for the
variables. (Input)
Vector of length N containing the upper bounds for the
variables. (Input
Array of dimension &MAX by M A X containing an the final
approximation to the Hessian. (Output)
Leading dimension of DCL ewctly as specified in the
dimension statement in the calling program. (Input)
Vector of length NMAX containing the diagonal elements of
the Hessian. (Output)
Work vector of length M used in gradient evaluation.
Work vector of length M + 2*N.
Work vector of length N + 1.

- The ccmputed function value at the point X.

(Output)

Appendix C: DN40NF1 .FOR - 1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

DLA -
E L F -
BDEL -
ETA -
XOLD -
DLAOLD -
V
W
VMUOLD -
DPHI -
WEN -
SCG -
FBEST -
DFBEST -
GBEST -
DGBEST -
WA -
LWA -

-
-

N1 -
M N N -
MNN2 -
" N -
No1 -

Mol -

"C -
N G W -
ITER -
NQL -
ILINE -
IFLISE -
NOW -
IW
LIW -
PHI -
DFDEL -
DBD -
ALPHAM -
ALPHA0 -
SCF -
PRD -
ACTIVE -

-

LACTIV -

L7

Work vector of length N.
Work vector of length N + 1.
Work vector of length N.
Work vector of length N.
Work vector of length N.
Work vector of length N.
Work vector of length N + 1.
Work vector of length N + 1.
Work vector of length M + 2*N.
Work vector of length M + 3*N.
Work vector of length M + 2*N.
Work vector of length MMAX.
Work scalar.
Work vector of length NMAX.
Work vector of length MMAX.
Work array of dimension Mol by N.
Work vector of length LWA.
Length of lnlA where LWA = N*(2*N+13) + M + MMAX + 12.
(Input)
Scalar containing the value N + 1. (Input)
Scalar containing the value M + 2". (Input)
Scalar containing the value M + 2*N + 2. (Input)
Scalar containing the value M + 3*N. (Input)
Scalar containing the value 1 when LLISE is true or N
when LLISE is false. (Irgut)
Scalar containing the value 1 when LLISE is true or MMAX
when LLISE is false. (Input)
Number of function evaluations. (Output)
Number of gradient evaluations. (Output)
Number of iterations. (Output)
Number of QL algorithm evaluations.
Number of line search evaluations. (Output)
Error parameter for line search algorithm. (Output)
Number of optimality iterations. (Output)
Work vector of length LIW.
Length of IW where LIW = 12. (Input)
Scalar variable.
Scalar variable.
Scalar variable.
Scalar variable.
Scalar variable.
Scalar variable.
Scalar variable.
Logical vector of length LACTIV indicating which
constraints are active. (Output)
Length of ACTTIE where LACTIV must be at least 200.
(Input)
Logical vect:r of length 7.

(Output)

Remark:
The NLFQL algorithm was designed by K. Schittkowski.

Topic: MATH Optimization

C
STJBROUTINEDN~ONF (FCNS, MMAX, N, NMAX, x, XS, G, DF, LDDGi

U, XL, X U , E L , LDDCL, CD, CWK, VMU. DEL.
DLA, ELF, BDEL, !3l'A, XOLD, DLAOLD, V, W,
W O L D , DPHI, RPEN, SCG, FBEST, DFBEST,
GBEST, DGBEST, WA, LWA, M"2, Mol, NFUNC.

&
&
&
&
& NGRAD, ITER, NQL, ILINE, IFLISE, NOW, IW.
& LIW, PHI, DF'DEL. DBD, ALPHAM, ALPHAO, SCF,
& PRD, ACTIVE, L7)

SPECIFICATIONS FOR ARGUME"S C
INTEGER MMAX, N, NMAX, LDDG, LDDCL, MA, MNN2, Mol, "c,

& NGRAD, ITER, NQL, ILINE, IFLISE, NOFT, LIW, Iw(*)

&
DOUBLE PRECISION FBEST, PHI, DFDEL, DBD, ALPHAM, ALPHAO, SCF,

PRD, X(N), X S (*) , G(MMAX), DF(*), EG(LDEG,*).

Appendix C: DN40NF1 .FOR - 2

C

C

C

C
C
C

C

C

C

h U(M"Z), XL(*), xu(*). DcL~LDDcL.*). cD(*), cwK(*).
h ~ (1) . DEL(*) , DLA(*). DcLF(*). BDEL(*). ETA(*) .
h XOLD(*), DLAoLD(*), v (l) , W (1) , vMvoLD(*), D P H I (*) ,
h wm(l), S C G (*) , DFBEST(*), GBEST(*) , DGBEST(MOl,*),
h vvA(*)

LOGICAL r n T V E (*) , L 7 (7)
ExmRNALFu.as

I"EGER I, IFAILl, ITWLS, -IT, IOU", IPR, I-, J,
SPECIFICATIONS FOR I1)(3AL VARIABLES

h LIwpL, rwAQL, ME1, MmX.2. m, MN1, m, N2, mm
DOUBLE PRECISION m i , mI, DCLll . DEUW. DLAN, EDEL, E D m I .

€4 -0, FACT, FF, OF, OUJ, PHIOLD, RPMAX, SDCLll. mCC,
h SQD, SRES, SUM, THETA, -AI., 'MI, UAD, UF. X W n ZE

SPECIFICATIceJs POR ClX4BXl /DEIlONF/
cxMMcxu /=OW/ F, ACC, SCBW. DBDFAC, ZEFAC, R P W , WENS,

& m, ZEFACU, DELTA, BETA. AMUE. M. ME. MAXFUN,
h MAXIT, IPRINT, MODE, IFAIL, LLISE. LQL. LMERIT
1- M, ME, MAXFUN, MAXIT. IPRINT, MODE, I F A I L
DOUBLE F'RECISICN F, ACC, s<IBou. DBDFAC, ZEFAC. RPm. RPmS,

LOGICAL LLISE, LQL, -IT

CCMKXU /DN1lNF/ N1, LACY, ND1, MMJ, NMNN
INTD2ER N1, LACI', No1, MNN, "N

INIWINSIC

EXTERNRL ElUSR, IXXFY. DCOPY. DSCAL. DSFT. WCAL, UMACH,

& RPm, ZEFACU, DELTA, BETA, AMUE, ALM

SPECIFICATIONS FOR CCMtCN /LBIllNF/

SPECIFICATIONS FOR I " S 1 C S

SPECIFICATIONS FOR sUBR0vTINE.S
DABS, ISWX1, W I N 1 , DBLE. DSQRT

€8 DCSFRG, IXF5QNF. tNS(EJG. DN6ONG. DNIONG, DNBONG
SPECIFICATIONS FOR RINCTIGNS

-XAL W., 1WY-U. IDMAI-, PDX; DAlOT
JJuTEER II1AMAx.IcMAx
DOUBLE PRECISIOPJ UW3i. DDOT, DAlOT

ZE = 0 .0W
ON = 1.ow
lw = 2.0w
EPSO = lOO.ODo*DMACH(4)
UF = EPSO'EPSO
OF = ON/UF
C A L L m C H (2 , IOUT)

CONSTANT DATA

INITIAL DEFINITIONS
M N = M + N
M E l = M E + l
N 2 = N + N
IM@L = LWA - & M A X - 40
L W L = LIW - 10
ILWLS = 2*mAX + 1
IMERIT = 0
I F (.NOT.IMERIT) IMERIT = 4
L 7 (6) = .FALSE.
L 7 (4) = .FALSE.
L 7 (5) = .FALSE.

IF (MODE.EQ.2 .OR. MODE.EQ.7 .OR. MODE. EQ.3 .OR. MODE-EQ. 8) THEN
SQACC = nsQRT(ACC)

L 7 (6) = .TRUE.
IF (I F A I L -4. -1) Go "Q 6 1 0
I F (I F A I L .EQ. -2) GO "Q 6 5 0

END I F
ILINE = 0
ALPHA0 = ZE
" c = o
N G R A D = o
ITER = 0
NQL = 0
Nom = 0
IF (M .NE. 0)

l w l M A x 2 = M t q 4 x + M M A x
DO 10 J=1. ?MAX2

Appendix C: DN40NF1 .FOR - 3

ACTIVE(J) = .TRUE.
10 CONTINUE

END IF
IF (.NoT.L7(6)) THEN

CALL ElUSR ('ON')
CAU FCNS (M, ME, N, X, ACTIVE(MMAX+l). F. G)
CALL ElUSR ('OFF')
CALL DN5W (FCNS, M. ME, MMAX, N. X, XS. ACTIVE, F. G, DF,

& DG, CWK)
END IF
L7(1) = .FALSE.
L7(2) = .FALSE.
IF (DABS(F) .GE. SCBOU) THEN

L7(1) = .TRUE.
IF (SCBOU .GT. ZE) SCF = l.ODO/DSQRT(DABS(F))
F = SCF'F
CALL DSCAL (N, SCF, DF, 1)

END IF
IF (M .NE. 0) THEN

DO 20 J=1, M
IF (DABS(G(J1) .GE. SCBOU) L7(2) = .TRUE.

20 CONTINUE
END IF

IF (L7(2)) THEN
C

DO 30 J=1, M
IF (SCBOU .GT. ZE) SCG(J) = l.ODO/DMAXl(l.ODO,

G(J) = SCG(J)*G(J)
CALL DSCAL (N, SCG(J), DG(J,1), LDDG)

& DSQRT(DABS(G(J1)))

30 CONTINUE
END IF

IF (IPRINT .GE. 1) THEN
C

IF (L7(1) .AND. .NoT.L7(2j) WRITE (IOUT,99963)

IF (L7(1) .AND. L7(2)) WRITE (IOUT.99964)
99963 FORMAT (/ , 5X. 'OEJM3TIVE F"CTI0N WILL BE SCALED')

99964 FORMAT (/ , 5X. 'OBJECTIVE AND CONSTRAINT FUNCTIONS WILL BE ' ,
& ' SCALED ')

IF (."I'.L7(1) .AND. L7(2)) WRITE (IOUT,99965)
99965 FORMAT (/ , 5X. 'CONmINT FUNCTIONS WILL BE SCALED')

C
END IF

"C = "C + 1
NGm = NGm + 1
DCLF(N1) = O.ODO
CALL DCOPY (N, DF, 1, DEL, 1)
CALL DSCAL (N, -1.ODO. DEL, 1)
CALL DSET (N, O.ODO, DCL(N1,1), LDDCL)
CALL DSET (N, O.OD0, DcL(l,Nl), 1)
DCL(N1,Nl) = ZEFAC
IF (MODE.EQ.l .OR. MODE.EQ.6 .OR. MODE.EQ.3 .OR. MODE.EQ.8) THEN

IF (LQL) GO TO 50
GO TO 750

END IF

CALL DSET (N, 1.ODO. CD, 1)
DO 40 I=l, N

C

CALL DSET (N, O.OD0, DcL(1,I). 1)

CALL DSET (N, 1.ODO. DcL(1.1). LDDcL+l)

CALL DSET (MNN, O.ODO, VMU, 1)
IF (MODE.EQ.l .OR. MODE.EQ.6 .OR. MODE.EQ.3 .OR. MODE.EQ.8)

CALL DN50NG (IMERIT+3, M, ME, N, MNN, NMNN, ACC, RPEN, F, DF, G,

40 CONTINUE

50 CALL DSET (MNN, RPENS, RPEN, 1)

& CALL DCOPY (MNN, u, 1, VMU, 1)

& DG, LDDG, VMU, U, X, XL, XU, PHI, DPHI, ACTIVE, WA,
& 4)

C START MAIN LOOP, PRINT INTERMEDIATE

Appendix C: DN40NF1 .FOR - 4

- -

C ITERATES
60 -1"E

L7(3) = .FALSE.
IF (IPRINT .LT. 3) GO TO 90
IF (L7(1)) F = F/SCF
WRITE (IovT.99966) ITER. F, (X(I),I=l,N)

99966 FORMAT (//5X, 'ITERATION', 13, //8X, '"CTION VALUE: F(X) = ' ,
& D16.8, /EX, 'VARIABLE: X = ' , /, (9X.4D16.8))

70

99967

99968

80

90

99969

100
C

110

120

130

IF (L7(1)) F = F*SCF
IF (M.NE.0 .AND. (L7(1).OR.L7(2)))

IF (L7(1)) CW DSCAL (M, 1.oM)/SCF. VMU. 1)
IF (L7(2))

DO 70 J=1, M
W (J) = VMU(J)*SCG(J)
G(J) = G(J)/SCG(J)

CCBVTINUE
EIUD IF

END IF
WRITE (IOUT.99967) (VMU(J) ,J=l,M")
FORMAT (EX, 'MULTIPLIERS: U = ' , /, (9X.4D16.8))
IF (M .NE. 0) THEN

WRITE (IOUT.99968) (G(J) ,J=l,M)
FORMAT (EX, '-S: GfX) = ' , /, (9X.4D16.8))
IF (L7(1) .OR. L7(2)) THEN

IF (L7(1)) CALL C S 3 L (M. SCF, VMU, 1)
IF (L7(2)) THEN

DO 80 J=l, M
VMU(J) = VMU(J)/SCG(J)
G(J) = GfJ)*SCG(J)

CONTINUE
qm TC
Y Y 4.

END IF
DID IF
ITER = ITER + 1
IF (ITER .LT. MAXIT) GO To 100
IFAIL = 1
IF (IPRINT .4. 0) GO TO 350
WRITE (IOVT, 99969)
FO-T (EX, '*'MORE THAN M I T ITERATIONS')
GO TO 350
CONTINUE

CALL DCOF'Y (N, DF. 1. DCLF. 1)
DO 110 I=l, N

CONLINm
DO 120 I=l, N

coI?rINuE
IPR = 0
IF (IPFUNT.GT.10 .AND. IPRI".LT.1000) IPR = I F " - 10
IF (MODE .GE. 5) GO TO 130
IFAILl = ITER
IF (L7(4) .OR. L7(5)) IFAILl = 1
Iw(11) = 0
IF (LQL) Iw(1l) = 1
Iw(12) = 0
CALL DN6ONG (M, ME. MMAX. N, NMAX. M", DCL, LDWL. ELF. E.

& LDX, G, V, W, DEL. U. IFAIL1. IF%. MAFPfAX+41).

SEARCH DIRECI'ION

V(1) = - X(1)

W(1) = Xu(1) - X(I)

& LWAQL. Iw(11), L m L)
DEL(N1) = ZE
NQL = NQL + 1
L7(4) = .FALSE.
IF (IFAIL1 -4. 0) GO TO 220
CONTINUE
IF (ITER .4. 1) GO TO 140
FACT = TW*DABS(DBD*DFDEL)/(DSQRT(DBD)*(ON-DEL(Nl)))
IF (LQL) FACT = FACT'FACP
DCLll = cMAXl(ZEFAC,FACT)

Appendix C: DN40NF1 .FOR - 5

DCL(N1,Nl) = EMINl(ZEFACU,DCLll)

CALL DSET (N, O.ODO, DEL, 1)
140 CONTINUE

DEL(N1) = 1.ow
C

IF (M .NE. 0) THEN
CALL DCOPY (M, G, 1, DG(l,Nl), 1)
CALL DSCAL (M, -1.ODO. M=(l.N1), 1)
Do 150 J=1, M

IF (.NOT.ACTIVE(J)) DG(J.N1) = O.ODO
150 CONTINUE

END IF

V(N1) = O.ODO
W(N1) = 1.ODO
IFAILl = -ITER
IF (.NOT.L7(4) .OR. L7(5)) IFAILl = -1
IW(11) = 0
IF (LQL) IW(11) = 1
IW(12) = 1
CALL DN60NG (M, ME, MMAX, N1, NMAX, M"2, EL, LDDCL. DCLF, E,

C

& mDG, G, V, W, DEL, U, IFAILl. IPR. WA((MMAx+41),
& LWAQL, IW(11), LIWQL)
NQL = NQL + 1
M N 1 = M + N1+ 1
M N N l = M + N l + N
L7(4) = .TRUE.
IF (IFAIL1 .EQ. 0) GO TO 170

160 IFAIL = 10 + IFAILl
IF (IPRINT .EQ. 0) GO TO 350
WRITE (IOUT.99970) IFAILl

GO M 350
99970 FORMAT (8X. '**ERROR IN QL. IFAIL(QL1 = I , 13)

170 CONTINUE
CALL DCOPY (N+1, U(MNl), 1, U(MN1-1), 1)
IF (IPRINT .LT. 3) GO M 180
WRITE (I(xpT,99971) DEL(N1)

& ' DELTA = ' , D13.4)
99971 FORMAT (8X. 'ADDITIONAL VARIABLE TO PREVENT INCONSISTENCY: ' ,

SDCLll = DCL(N1,NlI
IF (.NOT.LQL) SDCL11 = DSQRT(SDcL11)
WRITE (IOUT.99972) SDCL11

99972 FORMAT (8X. 'PENALTY PARAMETER FOR DELTA: RHO = ' , D13.4)
180 CONTINUE

DCLll = DCL(N1,Nl)
IF (DFL(N1) .LT. DELTA) GO TO 220
DCL(N1,Nl) = KLll*RPENO
IF (LQL) DCL(N1,Nl) = DCL(N1,Nl)'RPENO
IF (DCLll .LT. ZEFACU) GO TO 140

C AUGMENTED LAGRANGIAN TYPE SEARCH
C DIRECTION
190 L7(5) = .TRUE.

IF (IPRINT .LT. 3) GO TO 200
WRITE (IOUT.99973)

99973 FORMAT (8X. '**WARNING: A W E D LAGRANGIAN SEARCH DIRBTI'ION')
200 CALL DNSONG (4, M, ME, N, MNN, "N, ACC, RPEN, F, DF, G. E.

& LDDG, VMU, U, X, XL, XU, PHI. DPHI, ACTIVE, WA. 4)
CALL DCOPY (N. DPHI, 1. WA(41). 1)
CALL DCOPY (N, DPHI, 1, DCLF, 1)
IFAILl = 1
IW(11) = 0
IF (LQL) IW(11) = 1
IW(12) = 0
CALL DN60NG (0, 0, MMAX, N, NMAX, MNN2. DCL. LDXL, ELF, X.

& LDDG, G, V, W, DEL, U, IFAILl, IPR, WA(MMAX+41),
& LWAQL, IW(11). LIWQL)
IF (IFAIL1 .GT. 0) GO TO 160
IF (M .EQ. 0) GO TO 230
CALL DCOPY (N2, U, -1, U(M+1), -1)

Appendix C: DN40NF1 .FOR - 6

Appendix C: DN40NF1 .FOR - 7

C TEST FOR OFTIMALITY AND FINAL OUTPUT
SRES = ZE
SUM = DABS(DFDEL)
IF (L7(1)) SUM = SUM/SCF
NACT = 0
IF (M .NE. 0) THEN

DO 310 J=1, M
IF (ACTIVE(J) NACT = NACT + 1
UAD = DABS(G(J))
IF (L7(2)) UAD = UAD/SCG(J)
IF (J.LE.ME .OR. G(J).LT.ZE) SRES = SRES + UAD

310 COp.SrINuE
SUM = SUM + DAlOT(M.U,l,G,l)
IF (IPRIW" .EQ. 3) THEN

WRITE (IOUT,99974) SRES
99974 FORMAT (8X. 'SUM OF CONSTRAINT VIOLATIONS: I , 19X.

& 'SCV = I , D13.4)
WRITE (IOUT.99975) NACT

99975 FORMAT (8X. 'NUMBER OF ACTIVE CONSTRAINTS: ' , 19X.
& "AC = I , 14)

END IF
END IF

DO 320 I=l, N
C

SUM = SUM + DABS(U(M+I)*V(I)) + DABS(U(MN+I)*W(I))
320 CONTINUE

IF (IPRINT .EQ. 2) THEN
FF = F
IF (L7(1)) FF = F/SCF
WRITE (IOuT,99976) ITER, FF, SRES, NACl', ILINE, ALPHAO,

& DEL(N11, DLAN, SUM
99976 FORMAT (lX, 13, D16.8, D10.2, 14, 13, 4D10.2)

C
EM) IF

IF (IPRINT .EQ. 3) THEN
WRITE (IOUT,99977) SUM

& 'KTO = I , D13.4)
99977 FORMAT (8X. 'KUHN-TUCKER OPTIMALITY CONDITION: ' # 9x,

WRITE (IOUT.99978) DLAN
99978 FORMAT (8X, 'NORM OF LAGRANGIAN GRADIENT: ' , 9x,

& 'Nu; = ' , D13.4)

99979

330

340
350

3 60

370
C

END IF
IF (DBD .GE. W) GO TO 330
IF (SRES .LT. SQACC) GO TO 340
IF (DBD .GT. ZE) GO TO 390
IF (.NOT.L7(5) 1 GO TO 190
IFAIL = 7
IF (IPRINT .EQ. 0) GO TO 350
WRITE (IOUT,99979)
FORMAT (8X, '**UNDERFLOW IN D(T)*B*D AND INFEASIBLE ITERATE X')
GO M 350
CONTINUE
IF (SUM.GE.ACC .OR. SRES.GT.SQACC) GO TO 390
IF (DLAN.LE.DSQRT(SQACC) .OR. DBD.LE.ACC) GO M 340
NOFT = NOFT + 1
IF (NOW .LT. 3) GO TO 390
IFAIL = 0
CONTINUE
IF (L7(1)) F = F/SCF
IF (M.EQ.0 .OR. (.NOI'.L7(1).AND..N(YT.L7(2))) GO TO 370 -
IF (L7(1)) CALL DSCAL (N,
IF (L7(2)) THEN

Do 360 J=1, M
U(J) = U(J)*SCG(J)
G(J) = G(J)/SCG(J)

COrnINuE
END IF
CONTINUE

l.ODO/SCF, U, 1)

Appendix C: DN40NF1 .FOR - 8

99980

99981

99982

99983

99984
380

99985

99986

99987

99988

99989

99990

390
C

IF (IPRINT .4. 0) GO To 9000
WRITE (IovT.99980)
FORMAT (/ / , 5X. ' * FINAL CONVERGENCE ANALYSIS', /)
WRITE (IovT.99981) F
FORMAT (EX, 'OBJECIIVE FU"1ON VALUE: F(X) = I , D16.8)
WRITE (IOUT.99982) (X(1) ,I=l,N)
FORMAT (EX, 'APPROXIMATION OF SOLUTION: X = ' , /, (9X. 4D16.8))
WRITE (IOUT.99983) (U(J) ,J=l,MNN)
FORMAT (EX, 'APPROXIMATION OF MULTIPLIERS: U = I , /, (9X,4D16.8))
IF (M .EQ. 0) GO To 380
WRITE (IOUT.99984) (G(J),J=l,M)
FORMAT (EX, 'c(xIJspRAINTVAL,UES: G(X) = I , /, (9X,4D16.8))
WRITE (IoVr, 99985) (V(I), I=l,N)
FORMAT (EX, 'DISLIANCE FRaM LOWER BOUND: XL-X = ' , 1 , (9X,4D16.8))
WRITE (IovT.99986) (W(1) ,I=l,N)
FORMAT (EX, 'DISTANCE FRaM UPPER BOUND: XU-X = ' , /, (9X.4D16.8))
IF (.Nar.LLISE) WRITE (IOVT.99987) ITER
FORMAT (EX, "UMBER OF ITERATIONS: ITER = ' , 14)
WRITE (IovT,99988) "c
FORMAT (EX, 'NUMBER OF FUNC-CWS: "c =', 14)
WRITE (IovT.99989) NGRAD
FORMAT (EX, "UMBER OF GRAD-CALLS: NGRAD = ' , 14)
WRITE (IOVT.99990) NQL
FORMAT (EX, 'NUMBER OF QL-CALLS: NQL = ' , 14, / / /)
GO TO 9000
C r n I N U E

IF (L7(5)) GO TO 400
WA(1) = DBD
WA(2) = DEL(N1)
h t 3 t = Rl?Em
WA(4) = DBLE(1TER)
CALL DNSONG (IMERIT+2, M. ME, N. MNN. IW", ACC. WEN. F. DF. G.

coRRE(3T PmALTY PAFaMEmR

.-. ,-.,

& DG, LDX. VMU, U. X. X L , XU. PHI. DPHI. ACTIVE.
& 4)
GO To 430

Do 410 I=l, N
400 SUM = ZE

410 SUM = SUM + DPHI(I)*DEL(I) + DABS(U(M+I)'V(I)) +
& DABs(u(MN+I)*w(I)
IF (SUM .GT. DsQRT(sQACC)) GO TO 430
Do 420 J=1, MNN

CALL DN~ONG (IMERIT+4, M, ME, N, MNN, IW". ACC. MEN. F. DF. G.
& DG, LDDG, VMU, u, x, XL, XU. PHI. DPHI. ACTIVE. WL
& 4)

420 RPEN(J) = CMINl(ZEFACU,RPEN(J)*RPENO)

430 IF (IPRINT .LT. 3) GO To 440
WRITE (IOUT,99991) DBD

99991 FORMAT (EX, 'PRODUCT OF SEARCH DIRM3TION WITH BFGS-MATRIX: I ,

& ' DBD = ' , D13.4)
WRITE (IovT,99992) (RPEN(J) ,J=l,MNN)

99992 FORMAT (8X, 'PENAL,TY P m : R = I , /, (9X.4D16.8))

C EVALUATION OF MERIT FUNCTION
C

440 CCNTI"E

450 CALL DNSW (IMERIT+3, M, ME, N, MNN, "N, ACC. WEN. F. DF. G.
& DG, LDDG, VMU, u, x, XL, XU. PHI. DPHI, ACTIVE. WA.
& 4)
IF (.NDT.L~(~)) CW ENSONG (IMERIT+4, M, ME, N. MNN, m. ACC,

& WEN. F, DF, G, DG, LDDG, VMU, U, X. XL, X U , PHI, DPHI,
& ACTIVE, WA, 4)
PRD = DDOT(N.DPHI.1.DEL.1)
Do 460 J=1, MNN

PHIOLD = PHI
IF (PRD .LT. ZE) GO M 480
CALL DSCAL (MNN, RPENO. Wm. 1)
1- = IIMAx(MNN.RPEN.1)
RpMAx = DMAX1(RPEN(IRPMAx).O.OW)

460 PRD = PRD + DPHI(J+N)'(U(J)-VMU(J))

Appendix C: DN40NF1 .FOR - 9

IF (RPMAX .LT. RPENU) GO TO 450
IF (L7(5)) GO TO 470
IF (.NoT.L7(4) .OR. DBD.LT.ACC) GO TO 190
DCLll = DCL(N1,Nl)
IF (DCL11 .GE. ZEFACU) GO TO 190
DCLll = DCLll*RPENO
IF (LQL) DCLll = DCLll*WENO
DCL(N1,Nl) = DCLll
GO TO 140

IFAIL = 2
IF (IPRINT .EQ. 0) GO TO 350
WRITE (IovT.99993) PRD

470 CONTINUE

99993 FORMAT (EX, '**SEARCH DIRECTION NUF PROFITABLE: DPHI*P = I ,

& D13.4)
GO TO 350

IF (IPRINT .LT. 3) GO TO 490
WRITE (IOUT.99994) PRD

480 CONTINUE

99994 FORMAT (EX, 'PRODUCT LAGRANGIAN GRADE" WITH ' , 'SEARCH ' ,
& 'DIRECTION: DLP = I , D13.4)

490 CONTINUE
C LINE SEARCH

WA(6) = XNM
WA(7) = DELNM
L7(7) = .FALSE.
IFLISE = 0

IF (IPRINT .GE. 1000) IPR = IPRINT - 1000
CALL DNBONG (ALPHAO, ALPHAM, PHI, PRD, AMUE, BETA, ILINE,

500 IPR = 0

& MAXFUN, IFLISE, IPR, WA(6). 35, IW, 10.
& ACTIVE(ILWLS), 5)
IF (IFLISE .GT. -2) GO TO 520
L7(7) = .TRUE.
FBEST = F
CALL DCOPY (M, G, 1, GBEST, 1)
IF (LLISE) GO TO 500
CALL DCOPY (N, DF, 1, DFBEST, 1)
DO 510 I=l, N

CALL DCOPY (M, X(l,I), 1, DGBEST(1.1). 1)
510 CONTINUE

520 CONTINUE

530 X(1) = XOLD(1) + ALPHAO*DEL(I)

540 VMU(J) = VMUOLD(J) + ALPHAO*(U(J)-VMUOLD(J))

GO TO 500

DO 530 I=l, N

Do 540 J=1, MNN

IF (IFLISE .EQ. 0) GO TO 570
IF (IFLISE .EQ. 1) GO TO 560
IF (IFLISE .GT. 1) GO TO 550
GO TO 600

IF (IPRINT .EQ. 0) GO TO 350
WRITE (IOUT.99995) IFLISE

GO TO 350
560 IFAIL = 4

IF (IPRINT .EQ. 0) GO TO 350
WRITE (IOUT, 99996)

GO TO 350

IF (IPRINT .LT. 3) GO TO 580
IF (ILINE .EQ. 1) WRITE (IOUT,99997)

IF (ILINE .GT. 1) WRITE (IOUT,99998) ILINE, ALPHAO

550 IFAIL = 1000 + IFLISE

99995 FORMAT (8X. '**ERROR IN LINE SEARCH. IFLISE = ' , 14)

99996 FORMAT (8X. '**MORE THAN MAXFUN FUNC-CALLS IN LINE SEARCH')

570 L7(3) = .TRUE.

99997 FORMAT (8X. 'LINE SEARCH SUCCESSFUL, AFTER ONE STEP: ALPHA = 1.')

99998 FORMAT (EX, 'LINE SEARCH SUCCESSFUL AFTER', 13, ' STEPS: ' ,
E4 ' ALPHA = I , D13.4)

580 CONTINUE

Appendix C: DN40NF1 .FOR - 10

IF (.NOT.L7(7) .AND. LLISE) Go M 630
IF (.NoT.L7(7) .AND. .W.LLISE) GO To 250
F = FBEST
CALL DCOPY (M. GBEST. 1. G, 1)
IF (LLISE) GO To 630
CALL DCOPY (N. DFBFS". 1. DF, 1)
DO 590 I=l, N

CALL Dcopy (M. DGBESl"(1.I). 1. m(1,1), 1)
590 m I N u E

CALL ~ ~ O N G (IMERIT+l. M, ME, N, MNN. IUMNN. ACC. WEN, F. DF. G.
& E, LDDG, W, U, X, XL, XU, PHI, DPHI, ACTIVE. m.
& 4)
GO M 250

600 CONTINUE
C N m FUNCPION AND GRADIENT VALUES

IF (L7(6)) THEN
XFAIL = -1
Go To 9000

EM) IF
CALL ElUSR ('a')
CALL FCNS (M, ME, N, X. ACTIVE(MMAX+l), F. G)
CALL ElUSR ('OFF')

IF (L7(1)) F = F*SCF

IF (M.NE.0 .AND. L7(2))

610 CONTINUE

C

DO 620 J=1, M
G(J) = SCG(J)*G(J)

620 CCXWINUE
EM) IF
W I = h i j + 1
CALL DN5oNG (IMERIT+3. M. ME. N. M".
u. I??, T a x , VMJ. u, x, XL,
& 4)
IF (LLISE .AND. .NCYl'.L7(3)) Go TO 500

CALL m5oNG (INERIT+l. M, ME. N. M",
& M;, LDM;, VMU. u. x, XL,
& 4)

630 CONTINUE

IF (L7(1)) F = F/SCF
IF (M.NE.0 .AM). L7(2)) T"

DO 640 J=l, M
G(J) = G(J)/SCG(J)

640 CONTINUE
EM) IF

IF (L7(6) THEN
IFAIL = -2
Go To 9000

C

EM) IF

cwm5oNF (FCNS,
C

& CWK)
650

C

660

C

"N, ACC, WEN. F. Df. G.
XU, PHI, DPHI. ACTIVE. m.

CONTINUE
N C ; R A D = N G R A D + l
IF (L7(1)) THEN

F = F'SCF
CALL DSCAL (N, SCF, DF, 1)

END IF

Appendix C: DN40NF1 .FOR - 11

& M;, LDE, VMU, U, X. XL, XU, PHI, DPHI, ACTIVE, WA,
& 4)
PRD = DDOT(N,DPHI,l,DEL,I)
DO 670 J=1, MNN

GO TO 500
670 PRD = PRD + DPHI(N+J)*(U(J)-VMUOLD(J))

C UPDATE HESSIAN OF LAGRANGIAN
680 DBD = DBD*ALPHAO*ALPHAO

CALL DSCAL (N, ALPHAO, BDEL, 1)
DO 690 I=l, N

ETA(1) = DLA(1) - DLAOLD(1)

EDEL = ALPHAO*D~(N,DEL,1,ETA,1)
DBDl = DBDFAC*DBD
IF (EDEL .GE. DBDl) GO TO 720
THETA = (DBD-DBDl)/(DBD-EDEL)
THETA1 = ON - THETA

690 CONTINUE

DO 700 I=l, N
700 ETA(1) = THETA'ETA(1) + THETAl'BDEL(1)
710 EDEL = DBDl
720 CONTINUE

DBDI = DSQRT(ON/DBD)
EDELI = DSQRT(ON/EDEL)

CALL DSCAL (N, DBDI, BDEL, 1)
CALL DSCAL (N, EDELI, ETA, 1)
IF (LQL) THEN

C UPDATE FACTORIZATION

DO 740 I=l, N
DO 730 J=1, I

DCL(J,I) = DCL(J,I) + ETA(I)*ETA(J) - BDEL(I)*BDEL(J)
730 CONTINUE
740 CONTINUE

CALL DCSFRG (N, DCL, LDDCL)
GO TO 60

END IF
CALL CPSIONG (N, DCL, LDDCL, CD, ETA, BDEL)

C CORRECT DATA FOR QL-SOLUTION
750 DO 770 I=l, N

SQD = DSQRT(CD(1))
IF (SQD .GT. UF) GO TO 760
IFAIL = 3
IF (IPRINT .EQ. 0) GO TO 350
WRITE (IWT,99999)

GO M 350
99999 FORMAT (EX, '**UNDERFLOW. IN BFGS-UPDATE')

760 CONTINUE
IF (I .LT. N) CALL DVCAL (N-I, SQD, DCL(I+l.I), 1, DCL(I,I+1)

DCL(I.1) = SQD
& , LDDCL)

770 CONTINUE
IF (ITER .EQ. 0) GO TO 50

GO TO 60

END

PERFOW NEXT ITERATION C

9000 RETURN

Appendix C: DN40NF1 .FOR - 12

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

KJAG Name:

Computer:

Revised:

Purpose :

Usage :

Arguments:

N9oNG/mS (Single/Double precision version)

september 24, 1987

ccmpute minimum of the unconstrained problem.

U&L N9eK; (N, M. W , MIAX, MN, LQL. A,
GRAD, G. XL, XU. X, NMX. IAm, INFO. DIAG.
w. rw)

Number of variables. (Input)
Number of constraints. (Input)
Number of equality constraints. (Input)
Leading dimension of A. (Input)
WAX must be at least MAX(1.M).
Scalar variable suxh that l@l= M + N.
Scalar variable SLU& that M" = M + 2".
Leading dimension of G. (Input)
WAX must be at least MAX(2,N).
Logical scalar determining the initial decomposition.
(Input)
If LQL is true, the initial Cholesky-factorization of G
is performed. If 4 L is false. the upper triangle of G
contains the Cholesky-factor of a suitable decomposition.
Array of dimension MM?iX by WAX containing the constraint
nomls in the columns. (Output)
Leading dimension of A exactly as specified in the
dimension statement of the calling program.
Vector of length @MAX containing the right-hand-sides of
the constraints. (Input)
Vector of length N containing the objective function
gradient. (Input)
Array of dimension NM?U by N containing symnetric
objective function matrix. (Input)
Vector of length N containing the lower bounds for the
variables. (Input)
Vector of length N containing the upper bounds for the
variables. (Input
Vector of length N containing the current point being
evaluated. (Input)
Number of active constraints. (Output)
Vector of length NPi?l' indicating the final active
constraints. (Output)
Scalar containing exiting information. (Output)
Scalar containing multiple of the unit matrix that was
added to G to achieve positive definiteness. (Output)
Work vector of length W.
Length of W where Lw = ~ * (Z * ' N M A x + l O) + M.
(Input)

WATH Cptimization

(Input)
(Input)

(Input)

Appendix C: DNSONG1.FOR - 1

C
C
C

C

& IRE, IS, ITERC, ITREF, IU, IW, IWA, IWD, IWR, IWS,
& w, IwWN, IWX, IWY, IWZ, IX, IY, 12, IZA, J, JFINC,
& JFLAG, JL, K, K1, KDROP, KFINC, KFLAG, KK, KNEXT,
€8 LFLAG, MFLAG, NFLAG. I'M, Nu

& PARING, PARNEW, RATIO, RES, SMAU, STEP, SUM, SUMA,

& XMAG, XMAGR

DOUBLE PRECISION BIG, CVMAX. DIAGR. FDIFF, FDIFFA. a. GB.
& SUMC, SUMX, SUMY, TEMP, TEMPA. VFACT, VsMALL,

LOGICAL LOWER

INPRINSIC DABS,DMAXl,DMINl.MAXO,MINO.DSQRT
SPECIFICATIONS FOR INTRINSICS

SPECIFICATIONS FOR SUBROUTINES

SPECIFICATIONS FOR FUNCTIONS
EXTERNAL DCOPY, DSET

EXTERNAL DMAcH, DMYT, DSUM, DAloT
DOUBLE PRECISION DM?icH, DMYT, DSUM, DAlUI'

INITIAL ADDRESSES

* * * * * Start Debug 1 *****

IBUG = 0

VSMALL = DMAcH(4)
SMALL = mIAcH(1)
BIG = DMACH(2)
IF (W L * B I G .LT. 1.ODO) SMALL = l.OW/BIG

C

C

C
C
C
C
C
C
C
C
C
C
C

Iwz = NMAX
IWR = Iwz + NMAx*NMAx
Iww = IWR + (NMAx*~NMAX+3))/2
IWD = Iww + NMAX
IWX = IWD + NMAx
IwA=Iwx+NMAX

VFACT = 1.ODO
SET SOME CONSTANTS.

SET SOME PARAMETERS. NUMBER LESS
THAN VSMALL ARE ASSUMED TO BE
"KLIGIBLE. THE MULTIPLE OF I THAT
IS ADDED TO G IS AT MOST DIAGR
TIMES THE LEAST MULTIPLE OF I THAT
GIVES POSITIVE DEFINITENESS. X IS

REDUCED BY THE FACTOR XMAGR. A
CHECK IS MADE FOR AN INCREASE IN F
EVERY IFINC ITERATIONS, AFTER
KFINC ITERATIONS ARE COMPLETED.

RE-INITIALISED IF ITS MAGNITUDE IS

DIAGR = 2.ODO
XMAGR = 1.OD-2
IFINC = 3
KFINC = MAXO(10,N)

C FIND THE RECIPROCALS OF THE LENGTHS
C OF THE CONSTRAINT NORMALS. RETURN
C IF A CONSTRAINT IS INFEASIBLE DUE
C TO A O.OEO NORMAL.

NACT = 0
DO 30 K=l, M

SUM = DMYT(N.A(K.1) ,LDA,A(K,l) ,LDA)
IF (SUM .GT. 0.OW) GO TO 10
IF (B(K) .EQ. O.ODO) GO M 20
INFO = -K
IF (K .LE. MEQ) GO TO 1020
IF (B(K)) 20,20,1020

10 SUM = l.ODO/DSQRT(SUM)
20 IA = IWA + K

30 COrnINUE
W(IA) = SUM

CALL DSET (N, l.ODO, W(IWA+M+l), 1)

Appendix C: DNSONGl .FOR - 2

C
C

C
C
C
C
C

C
C
C
C
C

C
C
C
C

C
C
C
C
C

C
C
C

IF NECESSARY INCREASE THE DIAGONAL
ELEMENTS OF G.

IF (.NoT.LQL) TO 150
DIAG = 0.OW
DO 50 I=1, N

I D = I W D + I
W(ID) = G(I.1)
DIAG = IXWU(DIAG.VSMALL-W(ID))

ttttt Start 2 ttttt

IF (I .M. N) Go To 50

IF (I .EQ. N .AND. N .NE. 1) GO To 50
IF (N .NE. 1) I1 = I + 1
IF (N .EQ. 1) I1 = 1

I I = I + l

ttttt EM Debug 2 ttttt

DO 40 J=II, N
GA = -DMINl(W(ID),G(J,J))
GB = DABS(W(ID)-G(J,J)) + DARS(G(1.J))
IF (GE3 .GT. 5Mw) GA = GA + G(I,J)*G(I,J)/GB

40 DIAG = DMAXl(DIAG,GA)
50 mINuE

IF (DIAG .Gp. 0.0DO) GO M 80
60 DIAG = DIAQI'DIAG

DO 70 I=l, N
ID = ~ w Z + i
G(I,I) = DIAG + W(ID)

70 CfXWINUE
FORM THE CHOLESKY FAcrORISATION OF
G. THE TRANSPOSE OF THE FAcroR
WILL BE PLACED IN THE R-PARTITION
OF W.

80 IR = IhR
DO 110 J=1, N

IRA = IWR
IRB = IR + 1
DO 100 I=1, J

TEMP = G(I,J)

ttttt start m g 3 ttttt

IF (I .NE. 1) THDl

IF (I .NE. 1 .OR. N .EQ. 1) THEN

ttttt &d mg 3 ttttt

TEMP = TPIP - DDOT(IR-IRB+1,W(IRB),1,W(IRA+1),1)
IRA = IRA + (IR-IRB+l)

END IF

IRA = IRA + 1
IF (I .LT. J) W(IR) = TDlP/W(IRA)

90 IR = IR + 1

100 CONTINUE

C ***** Start Debug 4
C
C6000 FORMAT(2HO
C6001 FORMAT(1018)
C6002 FOlWAT(4D20.11)
C6010 FORMAT(2HO ,2X,4H IWR.4X.4H IRB.SX.3H IR,4X,4H IRA,6X,2H I,
C 1 6X.2H J/8X,5H TEMP.13X.7H VSMALL)
C WRITE(6.6010)

Appendix C: DNSONGl .FOR - 3

C WRITE(6,6001) IWR, IRB, IR, IRA, I, J
C WRITE(6,6002) TEMP, VSMALL
C WRITE (6,6000)
C

C
c ***** md Debug 4 *****

IF (TEMP .LT. VSMALL) GO 120
W(IR) = DSQRT(TEMP)

110 CONTINUE
GO TO 170

C INCREASE FURTHER THE DIAGONAL
C ELEMEWl’ OF G.

120 W(J) = 1.oM)
SUMX = 1.ODO
K = J

IRA = IR - 1
130 SUM = O.ODO

DO 140 I=K, J
SUM = SUM - W(IRA)*W(I)
IRA = IRA + I

140 CONTINUE
IR = IR - K

C
c * * * e * Star t Debug 5 *****
C

C

C

C
c ***** Star t Debug 6 *****
C
C7000 FORMAT(2HO)
C7001 FORMAT(lOI8)
C7002 FORMAT (4D20.11)
C7010 m T (2 H O ,1X,5H NMAX,4X,4H IWZ,4X,4H IWR,4X,4H M,4X,4H IWD,
C 1 4X,4H IWX,4X,4H IWAA.5X,3H IA,SX,3H ID,5X,3H II/6X,2H M,6X,2H N,
C 2 6X.2H I, 5X.3H IR, 6X, 2H J.4X.4H IRB, 4X, 4H IRA, 6X.2H K/9X, 4H SUM,
C 3 14X,6H W(IR)/)
C WRITE(6,7010)
C WRITE(6,7001) NIWX, IWZ, IWR, I W , IWD, IWX, IWA, IA, ID, I1
C WRITE(6,7001) M, N, I, IR, J, IRB, IRA, K
C WRITE(6.7002) SUM, W(IR)
C WRITE(6,7000)

IF (K .LE. 1) GO TO 7700

c ***** md &bug 5 *****

K = K - 1

c
C e * * * * m d M u g 6 *****
C

W(K) = SUM/W(IR)
SUMX = SUMX + W(K)*W(K)
IF (K .GE. 2) GO TO 130

C
C ***** Star t Debug 7 *****
C
C GO TO 7701
C7700 IBUG = IBUG + 1
7700 CONTINUE
CEO10 FoRMAT(20H ***** IBUG = ,151
C WRITE(6.8010) IBUG
C7701 CONTINUE
C

C
C * * *e* md Debug 7 * * e * *

DIAG = DIAG + VSMALL - TEMP/SUMX
GO TO 60

C STORE THE CHOLESKY FACTORISATION IN
C THE R-PARTITION OF W.

150 IR = IWR
Do 160 I=l, N

Appendix C: DNSONGl .FOR - 4

CALL DCOPY (I, G(l,I), 1. W(IR+I*(I-1)/2+1), 1)
160 C C N I J X E

C SET 2 THE INVERSE OF THE MATRIX IN
C R.
1 7 0 N M = N - 1

Do 190 I=l, N
I Z = I W z + I
CALL DSET (1-1, o.OW, W(I2). N)
I2 = I2 + N*(I-l)
IR = IWR + (I+I*I)/2
W(I2) = l.OW/W(IR)
IF (I .EQ. N) GO To 190
IZA = I2
DO 180 J=I, hM

IR = IR + I
SUM = DDCYT((IZ-IZA)/N+1.W(IZA),N,W(IR),1)
IR = IR + (IZ-IZA)/N + 1
I2 = I2 + N
W(I2) = -SUM/W(IR)

180 mINUE
190 c(3NTINuE

C
C
C
C
C
C

ITERC = 1
I= = 0
JFINC = -KFINc

i
C
C
200 1- = 1

IWS=IhW-N
CALL DSET (N. O . O W , X, 1)
Do 230 I=l, N

I w = m W + I
W(IW) = GRAD(1)

SET THE INITIAL VALUES OF .%ME
VARIABLES. ITERC COUNTS THE NUMBER
OF ITERATIONS. ITREF IS SET TO
1. OED WHEN ITERATIVE REFINDENT IS
REQUIRED. JFINC INDICATES WHEZU TO
TEST FOR AN INCREASE IN F.

SET x T2 !?.!?EO ?>.El SET w-
CORRESPONDING RESIDUALS OF THE
KUHN-?vcKER CQNDITIONS.

IF (I .GT. NACT) GO TO 230
W(1) = o.oD0
IS = MIS + I
K = IACT(1)
IF (K .LE. M) GO To 220
IF (K .GT. MN) GO To 210

W(IS) = XL(K1)
GO TO 230

K l = K - M

210 K1 = K - MN
W(IS) = -XU(Kl)
GO To 230

220 W(IS) = B(K)
230 CONTINUE

XMAG = 0.0W
VFACT = l.OD+O
IF (NACT) 390,390,340

C SET THE RESIDUALS OF THE KUHN-TUCKER
C OITIONS FOR GENERAL X.
240 IFLAG = 2

IWS=IhlW-N
Do 290 I=l, N

I W = r n + I
W(IW) = GRAD(1)
IF (LQL) GO "0 270
I D = I W D + I
W(ID) = 0.OW
DO 250 J=I, N

Do 260 J=l, I
250 W(ID) = W(ID) + G(I,J)*X(J)

Appendix C: DNSONG1 .FOR - 5

300

310

320

KK = IACT(K)
IS = IWS + K
IF (KK .GT. M) GO TO 310
W(IS) = B(KK)
W 300 I=l, N

IW = Iww + I
W(IW) = W(IW) - W(K)*A(KK,I)

W(IS) = W(IS) - X(I)*A(KK.I)
GO TO 330
IF (KK .GT. MN) GO TO 320
K l = K K - M
IW = IWW + K1
W(IW) = W(IW) - W(K)
W(IS) = XL(K1) - X(K1)
GO M 330
K 1 z K K - m
IW = IWW + K1
W(IW) = W(IW) + W(K)
W(IS) = -XU(Kl) + X(K1)

330 -1NUE
C PRE-MULTIPLY THE VECPOR IN THE
C S-PARTITION OF W BY THE INVERS OF
C R TRANSPOSE.

340 IR = IWR
IP = IWW + 1
IPP = IWW + N
IL = IWS + 1
IU = Iws + NACT
DO 350 I=IL, IU

SUM = DtDT(I-IL,W(IR+1),1,W(IL) ,1)
I R = I R + I - I L + l
W(1) = (W(I)-SUM)/W(IR)

350 CONTINUE
C SHIFT X TO SATISFY THE ACTIVE
C CONSTRAINTS AND MAKE THE
C CORRESFONDING CHANGE TO THE
C GRADIENT RESIWALS.

DO 380 I=l, N
IZ = Iwz + I
SUM = DtDT(IU-IL+1,W(IL), l.W(IZ) ,N)
IZ = I2 + (IU-IL+l) *N
X(1) = X(1) + SUM
IF (.NCrr.LQL) THEN

ID = IWD + I
W(ID) = SUM*DSJM(N-I+1,G(I,I) , L E)
IW = Iww + I
W 360 J=1, I

ID = IWD + J
W(IW) = W(IW) + G(J,I)*W(ID)

360 CONTINUE
ELSE

W 370 J=1, N
IW = IWW + J
W(IW) = W(IW) + SUM*G(I,J)

370 CONTINUE

380 COEPTINUE
END IF

C FORM THE SCALAR PRODUCT OF THE
C GRADIENT RESIDUALS WITH
C EACH COLUMN OF 2 .

390 KFLAG = 1

Appendix C: DNSONGl .FOR - 6

400
C
C

410

C

420

430
C
C
440

450
C
C
C

460

470
C
C
C
C

C
4 80

490
C

GO To 1260
IF ~"l' .NE. N) THRJ

SHIFT X SO THAT IT SATISFIES THE
=NIX KUHN-TUCKER CCPJDITIONS.

IL = Iws + NACT + 1
I Z A = Iwz + NAcr"
Do 410 I=l, N

I2 = IZA + I
SUM = DDoT(IWW-IL+1,W(IZ) ,N,W(IL),l)
I2 = I2 + (IWW-IL+l)'N
X(1) = X(I1 - SUM

CCPJTINUE
INPO = ITERC
IF ~NAcT -EQ. 0) GO TO 440
IF

UPDATE THE LAC;RANGE MULTIPLIERS.
LFLAG = 3
GO ?.o 1030
Do 430 K=l. "I'

I W = I W + K
W(K) = W(K) + W(IW)

m I N U E
REVISE THE VALUES OF
ITERATIVE REF-

XMAG. BRANM IF
IS REQUIRED.

J m J L G = l
GO To 1230
IF (IFLAG .EQ. ITREF) GOTO

KDROP = 0
GO To 470
KDROP = KDROP + 1
IF (W(KDR0P) .GE. 0.OW) GO

240
DELEIT A co"p IF A LAGRANGE
MULTIPLIER OF AN ~ A L I T Y

IS NEGATIVE.

TO 470
IF (IACI'(KDR0P) .LE. m) CO TO 470
N u = N A (3 T
M F L A G = l
GO To 1120
IF (KDROP .LT. NACT) GO TO 460

SEEK THE GREATEAST NORMALISED
coNSl3AIlW VIOLATICN, DISREGARDING
ANY "HAT MAY BE DUE To CCXWPER
ROUNDING ERROW.

CVMAX = O.ODO

Do 490 K=l, M
IA=IYYA+K
IF (W(IA) .GT. O.OD0)

SUM = MXrr(N,X,l.A(K,l),LDA) - B(K)
SUMX = -SUM'W(IA)
IF (K .LE. MEQ) SUMX = lX4BS(.SUMX)
IF (SOMX .GT. CVMAX)

TEMP = DAES(B(K)) + IlAlOT(N.X,1,A(K,l),~)
l"A = TEXP + DABS(SUM)
IF ("A .GT. TEMP) THEN

TEMP = TEMP + 1.5DOfD?u3s(SUM)
IF ('I" .G". TEMPA)

cvMAx=suMx
R E s = S U M
K " = K

END IF
EM) IF

END IF
END IF

CONTINUE

Do 520 K=l, N
Lmnm= .TRUE.
IA=IhlA+M+K

Appendix C: DNSONG1 .FOR - 7

IF (W(1A) .LE. O.ODO) GO TO 520

500

510

520
C

C
C
C

530
C

540

550

560
570

580

590

600
C
C
C
C
C

SUM = XL(K) - X(K)
IF (SUM) 500,520,510
SUM = X(K) - XU(K)
LOWER = .FALSE.
IF (SUM .LE. CVMAX) GO TO
CVMAX = SUM
RES = -SUM
K N E X T = K + M
IF (LOWER) GO TO 520
KNEXT=K+MN

CONTINUE

INFO = ITERC
IF (CVMAX .LE. VSMALL) GO TO

520

TEST FOR CONVERGENCE

990
FU3TURN IF, DUE TO ROUNDING ERRORS,
THE ACTUAL CHANGE IN X MAY N(Tr
INCREASE THE OBJECTIVE FUNCTION

JFINC = JFINC + 1
IF (JFINC .EQ. 0) GO TO 590
IF (JFINC .NE. IFINC) GO TO 610
FDIFF = O.ODO
FDIFFA = O.ODO
Do 580 I=l, N

SUM = 2.ODO*GRAD(I)
SUMX = DABS(SUM)
IF (LQL) GO TO 550
ID = IWD + I
W(ID) = O.ODO
Do 530 J=I, N

IX = IWX + J
W(ID) = W(ID) + G(I,J)*(W(IX)+X(J))

CONTINUE

Do 540 J=1, I
ID = IWD + J
TENP = G(J,I)*W(ID)
SUM = SUM + TEMP
SUMX = SUMX + DABs(TEMp)

COrnINUE
GO TO 570
Do 560 J=1, N

IX = IWX + J
TEMP = G(I,J)*(W(IX)+X(J))
SUM = SUM + TEMP
SUMX = SUMX + DABs(TEMP)

CONTINUE
IX = IWX + I
FDIFF = FDIFF + SUM'(X(1)-W(IX))
FDIFFA = FDIFFA + SUMX*DABS(X(I)-W(IX))

CONTINUE
INFO = 0
SUM = FDIFFA + FDIFF
IF (SUM .LE. FDIFFA) GO TO 990
TEMP = FDIFFA + 1.5DOfFDIFF
IF (TEMP .LE. SUM) GO TO 990
JFINC = 0
Do 600 I=l, N

IX = Iwx + I
W(1X) = X(1)

CONTINUE
FORM THE SCALAR PRODUCT OF THE NEW
CONSTRAINT NORMAL WITH EACH COLUMN
OF 2. PARNEW WILL BECOME THE
LAGRANGE MUL,TIPLIER OF THE NEW
CONSTRAINT.

610 ITERC = ITERC + 1
IWS = IWR + (NAcT+NACr*NAcT)/2
IF (KNEXP .GT. M) GO TO 630

Appendix C: DNSONG1 .FOR - 8

DO 620 I = l , N
I W = M + I
W (l W = A(KNEXT.1)

620 C(31uTINUE

630 DO 640 I = l , N
GO TO 680

I w = I w + I
W (I W) = O.ODO

640 CONTINUE
K l = K N E X T - M
I F (K 1 .W. N) GO TO 660
I W = W + K l
W (I W) = 1.ow
I2 = IWZ + K l
DO 650 I = l , N

I S = I w s + I
W(1S) = W(I2)
I 2 = I 2 + N

650 CCNTI"E

660 K 1 = KNEXT - MN
GO TO 690

I W = I w + K l
W (I W) = -1.oDo
I 2 = Iwz + K 1
DO 670 I = l , N

I S = MIS + I
W (1 S) = -W(IZ)
I 2 = I 2 + N

670 CCNTINUE
GO TO 690

680 KFLAG = z
GO TO 1260

690 PARNEW = 0.OW
C
C IAST (N-"-2) SCALAR PRODUCTS
C EQUAL TO O.OE0.

APPLY GIVENS ROTATIONS To MAKE THE

I F WVJl' .EQ. N) GO TO 740
N U = N
N m d G = l
GO TO 1180

C
C A CONSTRAINT.

BRANCH IF THERE I S NO NEED M DELETE

700 IS = MIS + NAeT
I F ~NACT .a. 0) GO TO 9 3 0 .
SUMA = 0.ow
SUMB = 0.ow
I 2 = IWZ + NACX*N
SWK = DDOT(N,W(IZ+l) ,1 ,W(IZ+1),1)
DO 710 I = l , N

I 2 = I 2 + 1
I w = I h w + I
SUMA = SUMA + W (I W) * W (I Z)
SUMB = SUMB + I1ABS(W(IW)'W(IZ))

710 CONTINUE
TEMP = SUMB + .lD+O*DAEs(SUMA)
TEMPA = SUMB + .2DCO*DABS(SUMA)
I F (TEMP .LE. SUMB) GO TO 740
I F (TlMPA .LE. GOTO740
I F (SUMB .GT. Vs;MALL) GO M 720
GO TO 740

I A = I w A + K N E X T
I F (K"T .LE. M) SUMC = SUMC/W(IA)
TEMP = SUMC + .lD+O*DABS(SuMA)
TEMPA = Sum3 + .2D+O*DABS(SuMA)
I F (TEMP .LE. SUMC) GO TO 730
I F (TEMPA .LE. TEMP) GO TO 730
GO TO 930

720 SUMC = DSQRT(SUMC)

C CALCULATE THE MULTIPLIERS FOR THE

Appendix C: DNSONG1 .FOR - 9

C NEW CONSTRAINT NORMAL EXPRESSED IN
C TERMS OF THE ACTIVE CONSTRAINT
C NORMALS. THEN WORK our WHICH
C CONTRAINT TO DROP.
730 LFLAG = 4

740 LFLAG = 1
GO TO 1030

GO TO 1030
C COMPLETE THE TEST FOR LINEARLY
C DEPENDENT CONSTRAINTS.
750 IF (KNEXT .GT. M) GO TO 790

SUMA = A(KNEXT.1)
SUMB = DABS(SUMA)
IF (NACT .EQ. 0) GO TO 770
Do 760 K=l, NACT

KK = IACT(K)
IW = IWW + K
TEMP = W(IW)*A(KK,I)
s u M A = s u M A - T E M P
SUMB = SUMB + DABS(TEMP)

W 780 I=l, N

760 CONTINUE
770 IF (SUMA .LE. VSMALL) GO TO 780

TEMP = SUMB + .lD+O*DABS(SuMA)
TEMPA = SUMB + .2D+O*DABS(SUMA)
IF (TEMP .LE. SUMB) GO TO 780
IF (TEMPA .LE. TEMP) GO TO 780
GO TO 920

780 CONTINUE
LFLAG = 1
Go TO 1080

790 K1 = KNMT - M
IF (K1 .GT. N) K1 = K1 - N
W 850 I=l, N

SUMA = O.ODO
IF (I .NE. K1) GO TO 800
SUMA = 1.ow
IF (KNEXT .GT. MN) SUMA = -1.ODO

800 suMB=DABS(SUMA)
IF (NACT .EQ. 0) GO TO 840
Do 830 K=l, NACT

KK = IACT(K)
IF (KK .LE. M) GO TO 810
K K = K K - M
TEMP = O.ODO
IF (KK .EQ. I) TEMP = W(IW+KK)
K K = K K - N
IF (KK .EQ. I) TEMP = -W(IW+KK)
GO TO 820

TEMP = W(IW)*A(KK,I)
810 IW = I W + K

820 s u M A = s u M A - T E M p
830 SUMB = SUMB + DABS(TEMP)
840 TEMP = SUMB + .lD+O*DABS(SUMA)

TEMPA = SUMB + .2D+O*DABS(SUMA)
IF (TEMP .LE. SUMB) GO TO 850
IF (TEMPA .LE. TEMP) GO TO 850
GO TO 920

850 CONTINUE
LFLAG = 1
Go TO 1080

C BRANCH IF THE CONTRAINTS ARE
C INCONSISTENT.

860 INFO = -KNEXT
IF (KDROP .EQ. 0) GO TO 990
PARINC = RATIO
PARNEW = PARINC

C m I S E THE LAGRANGE MULTIPLIERS OF
C THE ACTIVE CONSTRAINTS.

Appendix C: DNSONG1 .FOR - 10

870 IF W?Cl' .EQ- 0) GO To 890
DO 880 K=l, NACT

I W = M + K

IF (I A C T (K) .GT. MEQ) W(K) = nMAxl(O.ODO,W(K))
W(K1 = W(K) - PARINC*W(IW)

880 mINuE
890 IF (KDFtOP .EQ. 0) GO To 970

C DELETE THE CONSTRAINT To BE DROPPED.
C SHIFT THE VECIylR OF SCALAR
C PFtODUCI'S. THEN, IF APPROPRIATE,
C MAKE m MORE SCALAR PR0DUc.r
C O.OEO.

N U = N A c r + l
MFLAG=2
GO To 1120

900 Iws = Ihls - NAm - 1
NU = MINO(N,Nu)
DO 910 I=l, Nu

I S = I W s + I
J=IS+NACT

910 W(IS) = W(J+1)
N F L A G = 2
GO To 1180

C CAZXJULATE THE STEP TO THE VIOLATED
C m w .
920 IS = IWS + NAC"
930 SUMY = W(IS+l)

m = -REs/suMY
P A R m = m/m.
IF ~NACT .4. 0) GO To 950

e rs;cLkTE THE m!Es To THE
C LAC;RANGE MULTIPLIERS, AND REDUCE
C THE STEP ALmE THE m SEARCH
C DImION IF NECESSARY.

L F L A c = 2
GO M 1030

940 IF (KMIOP .EQ. 0) GO To 950
TEMP = 1.OW - RATIO/PARIK
IF (m .LE. 0.0W) KDROP = 0
IF (KDROP .EQ. 0) GO TO 950 .
STEP = RATIO'SUMY
PARINC = RATIO
RES = =*RES

C UPDATE X AND THE LAGRANGE
C MLTLTIPIERS. DROP A C C N m IF
C THE FULL STEP IS TAKDI.
950 IWY = IWZ + NACI'N

Do 960 I=l, N
I Y = I w Y + I

960 X(1) = X(1) + SEP'W(IY)
PARNEW = PARNm + PARINC
IF WC" .GE. 1) GO To 870

C , ADD THE NEW CONSTRAINT TO THE A C T m
C SET.
970 NACT = NACT + 1

W~NACT) = PARNEW
IACl'(NACI') = KNEXT
IA=IWA+KNEXT
IF (KNMT .GT. MN) IA = IA - N
W(IA) = -W(IA)

C ESTIMATE THE MAGNITUDE OF X. l"
C BEIN A NEW ITERATION,
C RE-INITILISING X IF THIS MAGNITUDE
C IS SMALL.

.FLAG = 2
GO To 1230

IF (ITREF) 480,480,240
980 IF (SUM .LT. (XMXR*XMAG)) GO TO 200

C INITIATE ITERATIVE REFI- IF IT

Appendix C: ONSONG1 .FOR - 11

C HAS NOT YET BEEN USED, OR RETURN
C AFTER RESTORING THE DIAGONAL
C ELEMENTS OF G.
990 IF (ITERC .EQ. 0) GO TO 1000

ITREF = ITREF + 1
JFINC = -1
IF (ITREF .EQ. 1) GO TO 240

1000 IF (."T.LQL) RETURN
Do 1010 I=l, N

I D = I W D + I
1010 G(1,I) = W(ID)
1020 RETURN
C THE REMAINIG INSTRUCTIONS ARE USED
C AS SUBROUTINES. CALCULATE THE
C LAGRANGE MULTIPLIERS BY
C PRE-MULTIPLYING THE VECMR IN THE
C S-PARTITION OF W BY THE INVERSE OF
C R.
1030 IR = IWR + ~NACT+NACT*NACT)/2

I = NACT
SUM = O.ODO
GO TO 1070

SUM = O.ODO
IF (NACT .EQ. 0) GO TO 1060
W 1050 J=I, NACT

IW = I W + J
SUM = SUM + W(IRA)*W(IW)

1040 IRA = IR - 1

1050 IRA = IRA + J
1060 IR = IR - I

I = I - l
1070 IW = IWW + I

IS = IWS + I
W(IW) = (W(IS)-SUM) /W(IR)
IF (I .GT. 1) GO TO 1040
IF (LFLAG .EQ. 3) GO TO 420
IF (LFLAG .EQ. 4) GO TO 750

C CALCULATE THE NEXT CONSTRAINT TO
C DROP.
1080 IP = Iww + 1

IPP = IWW + NACT
KDROP = 0
IF (NACT .EQ. 0) GO TO 1110
DO 1100 K=l, NACT

IF (IACT(K) .LE. MEQ) GO TO 1100
IW = I W + K
IF ((RES*W(IW)) .GE. O.ODO) GO TO 1100
TEMP = W(K) /W(IW)
IF (KDROP .EQ. 0) GO TO 1090
IF (-(TEMP) .GE. DABS(RATI0)) GO TO 1100

1090 KDROP = K
RATIO = TENP

1100 CONTINUE
1110 GO TO (860, 940), LFLAG
C DROP THE CONSTRAINT IN POSITION
C KDROP IN THE ACTIVE SET.
1120 IA = IWA + IACT(KDR0P)

IF (IACT(KDR0P) .GT. MN) IA = IA - N
W(IA) = -W(IA)
IF (KDROP .E4. NACT) GO TO 1170

C SET SOME INDICES AND CALCULATE THE
C E L m S OF THE NEXT GIVENS
C ROTATION.

IZ = IWZ + KDROP'N
IR = IWR + (KDROP+KDROP*KDROP)/2

IR = IR + KDROP + 1
TEMP = CMAX~(DABS(W(IR-~)),DABS(W(IR)))
SUM = TEMP*DSQRT((W(IR-1)/TEMP)**2+(W(IR)/TEMP)**2)

1130 IRA = IR

Appendix C: DNSONGl .FOR - 12

~ _ _ _ _ ~ .

=CHANGE THE COLUMNS OF R.

GA = W(IR-l)/=
GB = W(IR)/SUM

W 1140 I=l. KDROP
IRA=IRA+l
J = IRA - KDROP
TPIP = W(IR?d
W(IRA) = W(J)

C

1140 W(J) = TR4P
W(IR) = 0.OW

WfJ) = SllM
KDmP = KI3RoP + 1
Do 1150 I=KcBuIP. Nu

C APPLY THE ROTATION TO THE ROWS OF R.

TEMP = GA'W(IRA) + GB*W(IRA+l)
W(IRA+l) = GA'W(IRA+l) - GB'W(1RA)
W(1RA) = TEMP

1150 IRA = IRA + I
C APPLY THE ROTATION TO THE COLUMNS OF
C 2 .

Do 1160 I=l, N.
IZ = I2 + 1
J = I Z - N - = GA*W(J) + GB'W(1.Z)
W(1Z) = GA*W(IZ) - GB*W(J)

1160 W (J) = TR4P
C FUWISE IACT AND THE LAGRANGE
C MULTIPLIERS.

IAcr(KDR0P-1) = IACT(KDR0P)
W(KDR0P-1) = W(mR0P)
iF iiU3itGF .LT. X&C; GC % 1130

Go 10 (240, 900). MF'LAG
1170 "l' = NACT - 1

APPLY GIVENS ROTATION TO REDUCE SOME C
C OF THE SCALAR mconVerS IN THE
C S-PARTITION OF W To O.OE0.
1180 IZ = Iwz + NU'N
1190 I2 = I2 - N
1200 IS = Iws + Nu

N u = N u - l
IF (Nu -EQ. NAer) GO TO 1220
IF (W(IS) .EQ. 0.OW) GO TO 1190
TPIP = ~ 1 (~ (W ~ I S - 1 ~ ~ . ~ ~ W ~ I S ~ ~ ~
SUM = TEMP*DSQRT((W(IS-l)/TEMP)**2+(W(IS)/TEMP)**2)
GA = W(IS-l)/SuM
GB = W(IS)/SuM
W(1S-1) = SUM
Do 1210 I=1, N

K = I Z + N - = GA'W(I2) + GB*W(K)
W(K) = GA*W(K) - GB*W(IZ)
W(1Z) = TEMP

1210 IZ = IZ - 1

1220 GO To (700, 920). NFLAG
Go TO 1200

C CALCULATE THE MAGNITUDE OF X AN
C REVISE XMAG.
1230 SUM = 0.OW

W 1240 I=l, N
SUM = SUM + naBS(X(1))*vFACl"(DABS(GRAD(I))+DABS(G(I, I) *X(I)))
IF (LQL) GO TO 1240
IF (SUM .LT. 1.OD-30) GO TO 1240
WAC3 = l.OD-1O*VFACI'
SUM = 1.oD-1o*suM
XMAG = l.OD-lO*XMAG

1240 CONTINUE
1250 XMAG = DM&Xl(XMAG,SUM)

GO To (450, 980). JFLAC.
C PRE-MULTIPLY THE VECPOR IN THE

Appendix C: DNSONG1 .FOR - 13

W-PARTITION OF W BY Z TRANSPOSE. c
1260 JL = I W + 1

IZ = Iwz
DO 1270 I=l, N

IS = IWS + I
W(IS) = O.ODO
IWWN = I W + N
W(1S) = DMYT(IWWN-JL+l,W(JL),1,W(IZ+1),1)
IZ = IZ + (IWWN-JL+l)

1270 COhTIhUE
Go TO (400, 690). KFLAG
REIVRN
END

Appendix C: DNSONGl .FOR - 14

~ ~~

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
c
C
C
C
C
C
C
C
C
C

C
C
C

C

C
C

By Permission of Her Most Gracious Majesty

Elizabeth R

Jane Leyland presents

"Ye Olde Crystal Balle Magic Incantation'

An Elizabethan witchcraft and sorcery product
which defines Ye Olde Magic Control Wand.

***** This is a Main Driver Program for the optimal Neural-Network
Closed-Loop Trajectory Controller described in:

1. Leyland, Jane A . , 'A Closed-Loop opthl Neural-Network
Controller to optimise Rotorcraft Aercmechanical Eehaviour",

to be published as a NASA Technical Memorandum.

2 . Leyland, Jane A. , 'A Higher Harmonic Optimal Controller
to optimise Rotorcraft Aeromechanical Behaviour', NASA
Technical Maaorandum 110390, March 1996.

***** Start PROGRAM OPT'IM" *****

***** The '[LEyuIND.0~IM"]TYPEcoM.INC9 File is Included here.
This file contains the statements which establish and define:
1) the Principal CCmoN Blocks; 2) the Data TYPE of the
Principal Parameters, Arrays, and Vectors: and 3) the
DIMENSION of the Principal Arrays and Vectors of the
OPTIMNN system.

INCLWE ' [LEYLAND.OE'TUaa3lWF'Fl3X.IX'

INlEGER'4 ICASE. JERR

INIT, TRAJ
REAL*8 INIT, TRAJ

1071 MRMAT(43HO ***** NORMAL EXIT FROM OPTIMNN * * * * * / I
1072 FQmT(42HO ***** ERROR EXIT FROM OETIMNN * * * * * I /)
C
C
C ***** Initialisation *****
c

RTD = 360.000/'IwDPI
ICASE = 1
JERR = o

C
C ***** Run Case Number 'ICASE"
C

100 C r n I N U E

CALL INIT(JERR)

CALL TRAJUERR)

IF (JERR .NE. 0)

C

C
GO To 996

Appendix C: 0PTIMNN.FOR - 1

c
996 WRITE(6,1072)

WRITE (8,1072
J E R R = o
Go To 998

C
c ***** Normal &it *****
c
997 WRITE (6,1071)

WRITE(8,1071)
C
C * * * * * Check for subsequent case *****
C
998 IF (MULT .LE. 0) GO To 999

MULT = 0
ICASE = ICASE + 1
Go To 100

END
999 STOP

C2345678901234567890123456789012345678901234567890123456789012345678901234567890
C234567890123456789012345678901234567890~234567890123456789012345678901234567890
C2345678901234567890123456789012345678901234567890123456789012345678901234567890

Appendix C: 0PTIMNN.FOR - 2

~

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C

c
C
C

C
C

C
C

***** This subroutine: 1) reads changes to the Data Set Values of
the INPUT DATA via NAMELIST CDATA, and then 2) initialises
the data required to execute the trajectory simulation.

h**** Start SUBRWTINE INIT *****

h**** The .[LEyLAND.OpTIMNNlTYPEcaM.INC' File is Included here.
This file contains the statements which establish and define:
1) the Principal CCMKN Blocks; 2) the Data TYPE of the
Principal Parameters, Arrays, and Vectors; and 3) the
DIMENSION of the h-incipal Arrays and Vectors of the
OPTIMNN System.

INCLUDE ' [LEyLAND.0PMM"1TYP~.1NC'

h**** The g[ILMLAND.OPTIMNNIINITDAT.INC' File is Included here.
This file contains the statements which define the initially
set Default Values of the 'NAMELIST CDATA' INPUT Parameters
and the Values of the Internally Set Constants of the OPPIMNN
System.

INCLUDE ' [L E Y I A N D . O P T ~ I I N I T D A T . I N C '

INrEEER'4 JERR

1000 FORMAT(2HO 1
1001 FORMAT(2Hl 1
1071 LTlRMAT(40HO ***** EXIT F X M INIT * * * * * / /)
1072 FORMAT(39HO ***** ERROR MIT FRc)M INIT ***** / /)
7011 FORMAT (4D20.7)

C
C
C ***** Pre-Input Data Initialisation *****
C

C
C ***** Read INPWT Data with NAMELIST CDATA *****
C

C
C ***** Write I"fi Data *****
C

m = o

READ(7,CDATA)

Appendix C: INITFOR - 1

C
C ***** Post-Input
C

IF (JERR .NE. 0)
Go To 997

C
C ***** Error Exit
C
996 WRITE(6,1072)

WRITE(8,1072)
GO To 999

C

Data Initialisation *****

GO TO 996

C2345678901234567890123456789012345678901234567890123456789012345678901234567890
C2345678901234567890123456789012345678901234567890123456789012345678901234567890
C2345678901234567890123456789012345678901234567890123456789012345678901234567890

Appendix C: INIT.FOR - 2

~~~ 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 

C 
C 

***** This subroutine: 1) initialises for trajectory propagation, 
2) provides phase cut-logic, 3) reads reference trajectory 
data, 4) updates Neural-Network parameters, 5)  updates the 
control Vector. -and 6) propagates the trajectory. 

***** Start SUBROUTINE TRAJ ***** 

***** The ~[LEyLAM).O€TIM"lTYPEcoM.INc' File is Included here. 
This file contains the statements which establish and define: 
1) the Principal CCMMXJ Blocks; 2 )  the Data TYPE of the 
hrincipal Parameters, Arrays, and Vectors; and 3) the 
DIMENSIW of the Principal Arrays and Vectors of the 
O P T I m N  System. 

INCLm ' [ L E x L A N D . O P T I M N N I l Y P ~ . I N c '  

1000 FORMAT(2HO ) 
1001 FORMAT(2H1 ) 
1010 FORWiT(35Hl *+*** STAF3 TRAJEcroRY * * * * * / / I  
1011 FORMAT(20HO ***** FYUSE = ,12,3X,llH TABS = ,D13.5,3X, 

1 11H TREL = ,D13.5/25X,llH PINDX = ,D13.5) 
1071 FORMAT(4OHO ***** NORMAL EXIT E'RCM TRAJ ***** / / )  
1072 FDRWiT(39HO ***** ERROR EXIT FROM TRAJ ***'*//) 
1096 FORMAT(31HO ***** TRAJ DEBUG POIN" = ,I3,15H, "ID = , 

1097 FORWiT(31HO ***** TRAJ DEBUG POINT = ,13,15H, PHASE = ,  

1098 FORWiT(2X.6112) 
1099 FORMAT(31HO ***** TRAJ DEBUG POI" = ,13,15H, PHASE = ,  

1 I3.8H *****) 
7011 FORWiT(4D20.8) 

1 I3,8H *****) 

1 I3,15H, ICODE = ,I3,8H ***** ) 

C 
C 
C ***** INITIALISATION ***** 
C 

101 

C 

C 

C 

m = o  
IF (TF'INL-TINIT) 996, 996, 101 
GO M 996 
WRITE(6.1010) 
WRITE(8.1010) 
DFREQO = 0 
lMAx = o  
" u p 0  = o  
TABS = TINIT 
I m p  = 1  
IF (TLFINL-TLINIT) 141, 141, 102 

C ***** Initialisation for the Learning Trajectory Phase ***** 
C 

Appendix C: TRAJ.FOR - 1 



102 

114 

115 
116 

103 

104 

C 

C 
105 

C 

106 

107 
108 
109 

C 

110 

111 

C 

C 

IPHASE = 1 
DELAY =LDELAY 
DFREQ = D L m  
DLGTH =DLLGTH 
"ID = "LID 
IF ("ID-1) 115, 114, 115 
"UP = o  
GO TO 116 
"UP = 1  
TCUT = TLFINL 
TSTEP = TLSTEP 
IF (TLTYPE) 103, 103, 104 
TABS = TLINIT 
TREL = Z E R O  
T = TABS 
GO TO 105 
TREL = TLINIT 
TABS = TINIT + TLINIT 
T =TREL 

TD(1) = T 

IBUG = 105 
WRITE(6,lOOO) 
WRITE(8.1000) 
WRITE(6.1099) IBUG, IPHASE 
WRITE(8.1099) IBUG, IPHASE 
~~ITE(6,1000) 
WRITE(8,1000) 
WRITE(6.7011) T. TABS, TREL 
WRITE(8.7011) T, TABS, TREL 
WRITE(6.1000) 
WRITE(8.1000) 

IJK = o  
NIJKCVL = 0 
Do 109 K=l,NK 
M3 108 I=l.NI(K) 
Do 107 J=l,NJ(K) 
IF (IJKCVL(1,J.K)) 107, 107, 106 
IJK = IJK + 1 
cMAXNNL(1JK) = AMAX"L(I.J,K) 
CMINNNL(1JK) = AMINNNL(I,J,K) 
CVSNNL(1JK) = SCV"L(I,J,K) 
CONTINUE 
CONTINUE 
CONTINUE 
NIJKCVL = IJK 

JJJ = 0 
NJJECL = 0 
Do 111 J=l,NL2(2) 
IF (JJECL(J)) 111, 111, 110 
JJJ = JJJ + 1 
WNNL(JJJ) = WI"NL(J) 
CONTINUE 
NJJECL = JJJ 

NCONNNL = 0 

C ***** Definition of the Initial Data Values for the Sliding Window 
C Table (L = 1). 
C 

CALL STATE(XD(1.1) ,YD(l,l) ,JERR) 
IF (JERR .NE. 0)  GO TO 996 
TD(1) = T 

C 
C 

IBUG = 111 

Appendix C: TRAJ.FOR - 2 



C 
142 

171 
172 
173 

174 

175 
176 

143 

144 

C 

C 
145 

C 

146 

wRITE(6,lOOO) 
WRITE ( 8,1000 ) 
WRITE(6,1099) IBUG, IPHASE 
WRITE(8,1099) IBUG, IPHASE 
wRITE(6.1000) 
WRITE (8,1000) 
WRITE(6.7011) T, TABS, TREL 
WRITE(8,7011) T, TABS, TREL 
WRITE(6.1000) 
wRITE(8.1000~ 
WRITE(6.7011) (XD(I.11, 1=1,NL2(1)) 
WRITE(8.7011) (W(I,l), I=l,NL2(1)) 
WRITE(6,7011) (YD(J,l), J=l,NL2(2)) 
WRITE(8.7011) (YD(J.l), J=l,NL2(2) 
WRITE(6,lOOO) 
wRITE(8.1000) 

Go To 181 
C 

C 

C 
C ***** Initialisation for the Controlled Trajectory Phase ***** 

141 IF (TCFINL-TCINIT) 997, 997, 142 

IPHASE = 5 
GO To (171,173,173,171). SIMDDC 
IF (ISEPO) 173, 172, 173 
ISmP = 1 
ISmP = ISTEP + IsmPo 
DELAY =CDELAY 
DFRMl =DCFREQ 
DLL;TH =DCIGIH 
NNID = NNCID 
IF (NNID-1) 175, 174, 175 
"UP = o  
Go To 176 
"up = 1  
TCUT =mINL 
TWEP = x m  
IF W.X"E) 143, 143, 144 
TABS = TCINIT 
TREL =ZERO 
T = TABS 
GO To 145 
TREL = TCINIT 
TABS =TABS+TREL 
T =TREL 

TD(1) = T 

IBUG = 145 
WRITE (6,1000) 
WRITE(8.1000) 
wRITE(6,1099) IBUG, IPHASE 
wRITE(8,1099) IBUG, IPHASE 
WRITE(6.1000) 
wRITE(8.1000) 
WRITE(6.7011) T. TABS, TREL 
WRITE(8.7011) T, TABS. TREL 
WRITE(6.1000) 
WRITE(8.1000) 

IJK = o  
NIJKCVC = 0 
DO 149 K=l,NK 
Do 148 I=l,NI(K) 
DO 147 J=l.NJ(K) 
IF (IJKCVC(1,J.K)) 147, 147, 146 
IJK = IJK + 1 
CMAXNNC(1JK) = AMAX"C(I,J,K) 

Appendix C: TRAJ-FOR - 3 



147 
148 
149 

C 

150 

151 

C 

C 

156 

157 

C 

158 

159 

C 

160 
161 

C 

CMI"NC(1JK) = AMIN"C(I,J,K) 
cvs"C(IJK) = SCVNNC(1,J.K) 
CONTINUE 
CONTINUE 
CONTINUE 
NIJKCVC = IJK 

JJJ = 0 
NJJECC = 0 
DO 151 J=l,NL2(2) 
IF (JJECC(J)) 151, 151, 150 
JJJ = JJJ + 1 
WNNC(JJJ) = Wl"NC(J) 
CONTINUE 
NJ3;IJM3C = JJJ 

" N N C  = 0 

I1 = 0 
NICV = 0 
Do 157 I=l,NL2(1) 
IF (ICV(1)) 157, 157, 156 
I1 = I1 + 1 
cMAxC(I1) = AMAXC(1) 
CMINC(I1) = AMINC(1) 
cvSC(I1) = sCvC(1) 
CONTINUE 
NICV = I1 

JJ = 0 
NJOC = 0 
Do 159 J=l,NL2(2) 
IF (JEC(J)) 159, 159, 158 
JJ = JJ + 1 
WC(JJ) = WTC(J) 
CONTINUE 
NJEC = JJ 

I11 = 0 
"c = 0 
Do 161 I=l,NL2(1) 
IF (ICONC(1)) 161, 161, 160 
I11 = I11 + 1 
COrnINUE 
NCONC = I11 

C +****  Definition of the Initial Data Values for the Sliding Window 
C Table ( L  = 1). 
C 

CALL S"ATE(XD(1.1) ,YD(l,l) ,JERR) 
IF (JERR .NE. 0)  GO TO 996 
TD(1) = T 

C 
c 

IBUG = 161 
WRITE (6,1000) 
WRITE(8.1000) 
WRITE(6.1099) IBUG, IPHASE 
WRITE(8.1099) IBUG, IPHASE 
WRITE(6.1000) 
WRITE(8.1000) 
WRITE(6,7011) T, TABS, TREL 
WRITE(8,7011) T, TABS, TREL 
WRITE(6.1000) 
WRITE(8,lOOO) 
WRITE(6.7011) (XD(I,l), I=l,NL2(1)) 
WRITE(8,7011) (XD(I,l), I=l,NL2(1)) 
WRITE(6.7011) (YD(J,l), J=l,NL2(2)) 
WRITE(8,7011) (YD(J.1). J=l,NL2(2)) 

Appendix C: TRAJ.FOR - 4 



WRITE (6,1000) 
WRITE(8.1000) 

C 

C 
c ***et (JJT LOGIC ***** 

181 ICUT = 0 

C 
C 
200 

C 
C 
C 
C 
C 
C 
C 

201 
202 

203 
204 

C 205 
C 
C 
205 

206 
2 07 

C 

IBUG = 200 
WRITE (6,1000 
WRITE (8,1000) 
WRITE(6.1099) IBUG, IPHASE 
WRITE(8.1099) IBUG, IPHASE 
WRITE(6,lOOO) 
WRITE 18,1000) 
WRITE(6.7011) T, TABS, TREL 
WRITE(8.7011) T, TABS, TREL 
WRITE(6,10001 
WRITE(8,lOOO) 

IF (T-TCUT) 300, 202, 201 
T = T C U T  
I r n  = 1 
N N u P = o  
IF (IPHASE) 996, 996, 203 
GO TO (204,204,205,996,206,206,207,996). IPHASE 
IPHASE = 3 
DFREQO = 1 
D L G l " = D L L G I H .  
" U P 0  = 1  
a m  =DLLGpH 
GO TD 300 
IPHASE = 7 
CVUP = o  
DLGl" =DCLGTH 

READ TRAJEcroRY MTA ***** c ***** 
C 
C 
300 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

301 
C 
C 302 
C 303 
C 304 
C 
C 
C 305 
C 
C 306 
C 

IBUG = 300 
WRITE(6.1000) 
WRITE(8.1000) 
WRITE(6.1099) 
WRITE(8.1099) 
WRITE(6.1000) 
WRITE(8.1000) 
WRITE(6,7011) 
WRITE(8.7011) 
WRITE~6.1000) 
WRITE(8.1000) 
WRITE(6,7011) 
WRITE(8,7011) 
WRITE (6,7011) 
WRITE (8,7011 1 
WRITE(6,lOOO) 
WRITE(8.1000) 

IBUG, IPHASE 
IBUG, IPHASE 

T, TABS, TREL 
T, TABS, TREL 

IF (DFREQ) 996, 996, 301 
DATAR = J'MOD(ISTEP-1,DFREQ) 
IF (DATAR) 302, 304, 302 
IF (IPHASE) 996, 996, 303 
GO TO (600,600,600,996,511,511,511,996). IPHASE 
IF (IPHASE.NE.5 .OR. N"O.EQ.0) GO TO 305 
GO To 500 

ISTEP = 1 + (ISTEP - l)/D- 
IF (DELAY-LFEP) 306, 302, 302 
IF (IPHASE.NE.5 .OR. DFREQO.W.0) GOT0 321 
DFREQO = 0 

Appendix C: TRAJ.FOR - 5 



C GO TO 500 

IF (DATAR) 302, 305, 302 
302 IF (IPHASE) 996, 996, 303 
303 GO TO (600,600,600,996,511,511,511,996). IPHASE 

305 LSTEP = 1 + (ISTEP - 1)/DFREQ 
C 

IF (DELAY-LSTEP) 321, 302, 302 
C 
321 IF (LMAX-DLGTH) 323, 324, 322 
322 LMAX = DLGTH 

GO TO 324 
323 W = W +  1 

IF (LMAX-1) 996, 370, 324 
C 
C *****  Advance the Data Values for the Sliding Window Table 
C (L = 1 to LMAX). 
C 
324 W 330 L = 1, LMAX-1 

LL=LMAx-L 
TD(LL+1) = TD(LL) 
DO 325 I = 1, NL2(1) 
XD(I,LL+l) = XD(I,LL) 

Do 326 J = 1, NLZ(2) 
YD(J,LL+l) = YD(J.LL) 

325 CONTINUE 

326 CONTINUE 
330 CONTINUE 

C 
c ***** Definition of the First Set (L = 11 of Data Values for the 
C Sliding Window Table. 
C 
370 CALL STATE(XD(l,l),YD(l,l) ,JERR) 

IF (JERR .NE. 0 )  GO TO 996 
TD(1) = T 

IBUG = 370 
WRITE(6.1000) 
WRITE(8.1000) 
WRITE(6.1099) IBUG, IPHASE 
WRITE(8,1099) IBUG, IPHASE 
WRITE(6,lOOO) 
WRITE(8.1000) 
WRITE(6.7011) T, TABS, TREL 
WRITE(8.7011) T. TABS, TREL 
WRITE(6,lOOO) 
WRITE(8,lOOO) 

C 

C 
C * * * * *  Determine State from Neural-Net Model ***** 
C 

Do 373 I = 1,NL2(1) 
XN(1) = xD(I.1) 

CALL STATE"(XN,YN,JERR) 
WRITE(6.7011) (XN(I), I=l,NL2(1)) 
WRITE(8.7011) (XN(I), I=l,NL2(1)) 
WRITE(6.7011) (YN(J), J=l,NL2(2) 1 
WRITE(8.7011) (YN(J), J=l,NL2(2) 
WRITE(6,lOOO) 
WRITE(6.1000) 
WRITE(8.1000) 
WRITE(8,lOOO) 
DO 969 L=l,LMAX 
WRITE(6,7011) (XD(1.L). I=l,NL2(1)) 
WRITE(8,7011) (XD(I,L), I=l,NL2(1)) 
WRITE(6,7011) (YD(J,L), J=l,NL2(2)) 
WRITE(8.7011) (YD(J,L), J=l,NL2(2)) 
WRITE(6.1000) 
WRITE (8,1000) 

373 CONTINUE 

Appendix C: TRAJ.FOR - 6 



969 c€"INUE 
WRITE (6,1000) 
WRITE(8,lOOO) 

C 
IF ("ID) 371, 371, 400 

371 IF (IPHASE) 996, 996, 372 
372 GO To (600,600,600,996,500,500,500,996). .IPHASE 

C 
c ***** e**** 

C 
C 
400 IBUG = 400 

WRITE(6.1000) 
WRITE (8.1000) 
WRITE(6,1099) IBUG, IPHASE 
WRITE(8,1099) IBUG, IPHASE 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

WRITE ( 6,1000 1 
WRITE(8.1000) 
WRITE (6,1098) 
WRITE ( 6,1098 
WTE (6,1098) 
WRITE(8.1098) 
WRITE (8.1098) 
WRITE(8,1098 
WRITE ( 6,1000 
WRITE(8.1000) 
WTE (6,1098) 

WRITE (8,1098) 

WRITE (6,1098 1 

WRm(8.1098) 

WRITE (6,7011) 
WRITE ( 8,7 011 ) 

1 

1 

1 

1 

IsrEP, 
DFREQO , 
ISTEP. 
DFREQO , 
IsrEP , 
DFREQ. 
I=. 
DFREQ. 
T. 
T. 

IF ("ID) 500, 500. 401 
C 401 IF ("UP) 500, 402, 500 
C 402 IF (IRIASE.NE.5 .OR. NNUPO.EQ.0) GO To 403 
c " U P o = o  
C GO To 500 
401 IF ("UP) 500, 403, 500 
403 IF (IPHASE) 996, 996, 404 
404 GO To (411,411,411,996,421,421.996). IPHASE 

c 
C ***** Neural-Net op th isa t ion  During the Learning Trajectory Phase ***** 
C 
411 ICVDEF = 1 

1 m E F  = 1 
CALL cwcTR~wuM.JERR) 
IF (JERR .NE. 0) GO TO 996 
DO 412 IJK = 1,NIJKCVL 
CvO(1JK) = Cv(IJK) 

412 CONPINUE 

Appendix C: TRAJ.FOR - 7 



c WRITE(8,7011) (XD(I,L), I=1,NL2(1) 1 
C WRITE(6.7011) (YD(J,L), J=l,NL2(2)) 
C WRITE(8.7011) (YD(J,L), J=l,NL2(2)) 
C WRITE(6,lOOO) 
C WRITE(8,lOOO) 
C 971 CONTINUE 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 
C 
C 

WRITE(6,7011) (CVO(IJK), IJK=1,NIJKCVL) 
WRITE(8,7011) (CVO(IJK), IJK=l,NIJKCVL) 
~~ITE(6,1000) 
WRITE(8.1000) 

***** ICODE is the IMSL Informational Error Code Number ***** 

ICODE = 1 indicates that the Search Direction is Uphill. 
ICODE = 2 indicates that the Line Search required more 

than 5 mction Calls. 
ICODE = 3 indicates that the Maximum Number of Iterations 

were Exceeded. 
ICODE = 4 indicates that the Search Direction vector is 

close to being a Zero vector. 

CALL ERsET(0,l.O) 
ICODE = 0 
CALL DNCONF (J", NCONNNL, 0, NIJKCVL, C V O  , CVBDNNL, CMINNNL, CMAXNNL, 

ICODE = IERCD( ) 
1 CVS"L,OUT"L,MITNNNL,CV, PINDX) 

IBUG = 489 
WRITE(6,lOOO) 
WRITE (8,1000) 
WRITE(6,1097) IBUG, IPHASE, ICODE 
WRITE(8.1097) IBUG, IPHASE, ICODE 
WRITE(6.1000) 
WRITE(8.1000) 
WRITE(6.7011) T, TABS, TREL 
WRITE(8.7011) T, TABS, TREL 
WRITE(6,lOOO) 
WRITE(8,lOOO) 

*****  Determine State from Neural-Net Model ***** 

DO 413 I = 1,NL2(1) 
=(I) = XD(1,l) 

CALL STATE"(XN.YN.JERR) 
WRITE(6,7011) (XN(I), I=l,NL2(1)) 
WRITE(8.7011) (XN(I), 1=1,NL2(1)) 
WRITE(6,7011) (YN(J), J=l,NL2(2)) 
WRITE(8,7011) (YN(J), J=l,NL2(2)) 
WRITE(6,lOOO) 
WRITE(6.1000) 
WRITE(8.1000) 
WRITE(8,lOOO) 
DO 972 L=l,LMAx 
WRITE(6.7011) (XD(I,L), I=l,NL2(1)) 
WRITE(8,7011) (XD(I,L), I=l,NL2(1) 
WRITE(6.7011) (M(J,L), J=l,NL2(2)) 
WRITE(8.7011) (M(J,L), J=l,NL2(2)) 
WRITE(6.1000) 
WRITE(8.1000) 

WRITE(6.7011) (CV(1JK). IJK=l.NIJKCVL) 
WRITE(8.7011) (CV(IJK), IJK=l,NIJKCVL) 
WRITE(6,lOOO) 
WRITE(8,lOOO) 
WRITE ( 6,7011 ) PINDX 
WRITE(8.7011) PINDX 
WRITE(6,lOOO) 

413 CONTINUE 

972 CONTINUE 

Appendix C: TRAJ.FOR - 8 



WRITE (8,1000) 

GO TO 500 
C 

C 
C ***** Neural-Net Optimisation During the Controlled Trajectory Phase *** 
C 
421 

422 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 973 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 
C 
C 

IWX: = 422 
wRITE(6.1000) 
WRITE(B,lOOO) 
wRITE(6,1099) IBUG, IPHASE 
WRITE(8,1099) IBUG, IPHASE 
WFUTE(6.1000) 
WRITE (8,1000) 
WRITE(6.7011) T. TABS. TREL 
WRITE(8.7011) T. TABS, TREL 
WRITE(6.1000) 
WRITE (8,1000) 
Do 973 L=1,m 
WRITE(6.7011) (W(I,L), I=l,NL2(1) 1 
WRITE(8,7011) (W(I,L), I=l,NL2(1)) 
WFUTE(6.7011) (YD(J,L), J=l,NL2(2) 
wRITE(8,7011) (YD(J,L), J=l,NL2(2) 
WRITE(6,lOOO) 
WRITE(8.1000) 
CONTINUE 
WRITE(6.7011) (CvO(IJK), IJK=l,NIJKCvL) 
WRITE(8.7011) (CVO(IJK), IJK=l.NIJKCvL) 
WRITE(6.1000) 
WRITE (8,1000) 

***** ICODE is the DEL Informational Error Code Number ***** 

ICODE = 1 indicates that the Search Direction is Uphill. 
ICODE = 2 indicates that the Line Search required more 

than 5 Function Calls. 
ICODE = 3 indicates that the Maximum Number of Iterations 

were Exceeded. 
ICODE = 4 indicates that the Search Direction vector is 

close to being a Zero vector. 

CALL ERSGT(O,1,0) 
ICODE = 0 
CALL E@KGNF (J"W,"NNc, O,NIJKCVC,CVO,CVBI3JNC, CMINNNC, CMAXNNC, 

ICODE = IERCDO 
1 cvs"c.0uT"c.MITN"c.cv.P~) 

IBUG = 499 
WRITE(6.1000) 
WRITE(8.1000) 
WRITE(6,1097) IBUG, IPHASE, ICODE 
WRITE(8.1097) IBUG, IPHASE, ICQDE 
WRITE (6,1000) 
WRITE (8,1000) 
WRITE(6.7011) T, TABS. TIEL 
WRITE(8,70111 T. TABS. TREL 
WRITE (6,1000) 
WRITE (8,1000) 

***** Determine State from Neural-Net Model ***** 

Appendix C: TRAJ.FOR - 9 



423 

974 

C 

DO 423 I = 1,NL2(1) 
XN(1) = xD(I.1) 
CONTINUE 
CALL STATE"(XN,YN.JERR) 
WRITE(6.7011) (XN(I), I=l,NL2(1)) 
WRITE(8.7011) (XNN(I), I=l,NL2(1)) 
WRITE(6,7011) (YN(J), J=l,NL2(2) 1 
WRITE(8,7011) (YN(J), J=l,NL2(2)) 
WRITE(6,lOOO) 
WRITE16,lOOO) 
WRITE(8,lOOO) 
WRITE(8,lOOO) 
Do 974 L=l,LIWx 
WRITE(6,7011) (xD(1,L). I=l,NL2(1)) 
WRITE(8,7011) (xD(I,L), I=l,NL2(1)) 
WRITE(6,7011) (YD(J,L), J=l,NL2(2)) 
WRITE(8.7011) (YD(J,L), J=l,NL2(2)) 
WRITE(6,lOOO) 
WRITE(8,lOOO) 
CONTINUE 
WRITE(6,7011) .(CV(IJK), IJK=l,NIJKCVL) 
WRITE(8.7011) (CV(IJK), IJK=l,NIJKCVL) 
WRITE (6,1000 
WRITE(8,lOOO) 
WRITE(6.7011) PINDX 
WRITE (8,7011 ) PINDX 
WRITE(6,1000) 
WRITE ( 8,1000 ) 

C 
C ***** CONTROL VECTOR UPDATE ***** 
C 
c 
500 IBUG = 500 

WRITE(6,lOOO) 
WRITE(8,lOOO) 
WRITE(6,1099) IBUG, IPHASE 
WRITE(8,1099) IBUG, IPHASE 

IF (IPHASE) 996, 996, 501 
C 

501 GO TO (600,600,600,996,502,502.996). IPHASE 
502 IF (CVTID) 511, 511, 503 
503 IF (CWP) 511, 504, 511 

C 
C *****  Control Optimisation During the Controlled Trajec tory  Phase * * * * *  
C 
504 

505 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

ICVDEF = 5 
IECDEF = 3 
CALL cwrn(xD(1.1) ,JERR) 
IF (JERR .NE. 0)  GO "0 996 
Do 505 I1 = 1,NICV 
cvO(I1) = Cv(I1) 
CONTINUE 

IBUG = 505 
WRITE (6,1000 1 
WRITE(8.1000) 
WRITE(6,1099) IBUG, IPHASE 
WRITE(8.1099) IBUG, IPHASE 
WRITE(6.1000) 
WRITE(8.1000) 
WITE(6,7011) T, TABS, TREL 
WRITE(8.7011) T, TABS, TREL 
WRITE(6,lOOO) 
WRITE(8.1000) 
Do 975 L=l,LMAX 
WRITE(6,7011) (XD(1.L). I=l,NL2(1)) 
WRITE(8,7011) (XD(I,L), I=l,NL2(1)) 
WRITE(6.7011) (YD(J,L), J=l,NL2(2)) 

Appendix C: TRAJ.FOR - 10 



C wRITE(8.7011) (YD(J.L 
C WRITE(6.1000) 
c WRITE(8,1000) 
c 975 comINuE 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 
C 
C 

WRITE ( 6,7011 ) ( N O  ( I1 
wRITE(8,7011) (CVOIII 
WRITE(6,lOOO) 
WRITE(8.1000) 

, II=l,NICV) 
, II=l,NICV) 

***** ICODE is the IMSL Informational Error Code Number ***** 

ICQDE = 1 
ICODE = 2 

ICODE = 3 indicates that the Maximum Number of Iterations 

ICODE = 4 indicates that the Search Direction vector is 

indicates that the Search Direction is uphill. 
indicates that the Line Search required more 
than 5 Function Calls. 

were Exceeded. 

close to being a Zero vector. 

***** Determine State from Neural-Net Model ***** 

DO 509 I = 1,NL2(1) 
XN(1) = xD(I.1) 

CALL STATE"(XN.YN.JERR) 
WRITE(6.7011) (XN(I), I=l,NL2(1) 
WRITE(8.7011) (XN(1). I=I,NL2(1) 
WRITE(6.7011) (YN(J), J=l,NL2(2) 
WRITE(8.7011) (YN(J), J=1,NL2(2) 
WRITE(6.1000) 
WRITE(6,lOOO) 
WRITE (8,1000) 
WRITE(8.1000) 
DO 976 L=l.LNAX 

509 CONTINUE 

(CV(II), II=l,NICV) 
(CV(II), II=l,NICV) 

PINDX 
PINDX 

C 

Appendix C: TRAJ.FOR - 11 



c 
IF (UPDATE) 511, 511, 506 

C 
c ***** Update the First Set (L = 1) of the Sliding Window Table 
C (i.e., W(I.1) and YD(J,l) to those values determined by 
C the Current Control Optintisation (i.e., XN(1) and YN(J)). ***** 
C 
506 DO 507 I = 1, NL2(1) 

W ( I . 1 )  = XN(1) 
507 COW"INUE 

DO 508 J = 1, NL2(2) 
YD(J.1) = YN(J) 

508 CONTINUE 

511 IBUG = 511 
C 

WRITE(6.1000) 
~~ITE(8.1000) 
WRITE(6.1097) IBUG, IPHASE, ICODE 
WRITE(8.1097) IBUG, IPHASE, ICODE 
WRITE(6.1000) 
WRITE (8,1000) 
WRITE(6.7011) T, TABS, TREL 
WRITE(8.7011) T, TABS, TREL 
WRITE (6,1000) 
WRITE(8.1000) 

C 
C ***** Determine State from Neural-Net Model ***** 
C 

DO 510 I = 1,NL2(1) 
m(I) = W(I.1) 

CALL STATENN(XN,YN,JERR) 
WRITE(6.7011) (XN(I), I=l,NL2(1)) 
WRITE(8.7011) (XN(I), I=l,NL2(1) 1 
WRITE(6.7011) (YN(J), J=l,NL2(2)) 
WRITE(8.7011) (YN(J), J=l,NL2(2) 1 
WRITE(6.1000) 
WRITE ( 6,lO 00 ) 
~~ITE(8.1000) 
WRITE(8.1000) 
DO 970 L=l.LMAx 
WRITE(6,7011) (W(I,L), I=l,NL2(1)) 
WRITE(8,7011) (XD(I,L), I=l,NL2(1)) 
WRITE(6.7011) (YD(J,L), J=l,NL2(2)) 
WRITE(8.7011) (YD(J.L), J=l,NL2(2)) 
WRITE ( 6,1000 1 
WRITE(8,lOOO) 

WRITE(6,7011) (CV(II), II=l,NICV) 
WRITE(8,7011) (CV(II), II=l,NICV) 
WRITE(6.1000) 
WRITE(8.1000) 
WRITE ( 6,7011 ) PINDX 
WRITE ( 8,7011 ) PINDX 
WRITE ( 6,1000 ) 
WRITE(8,lOOO) 

510 CONI'INUE 

970 CCMI'INUE 

c 
IF (ICUT) 997, 512, 997 

512 IPHASE = 6 

IBUG = 512 
WRITE(6.1000) 
WRITE(8.1000) 
WRITE(6,1097) IBUG, IPHASE, ICODE 
WRITE(8.1097) IBUG, IPHASE, ICODE 
WRITE(6.1000) 
WRITE(8,lOOO) 

GO TO 602 

C 

C 

Appendix C: TRAJ.FOR - 12 



C 
C ***** -Y F'ROPAGATION ***** 
C 
C 
600 

C 

601 

602 
C 

C 

603 
604 
605 
606 
607 
608 

C 

IBUG = 600 
WRITE(6,lOOO) 
WRITE(8.1000) 
WRITE(6.1099) IBUG, IPHASE 
WRITE(8.1099) IBUG, IPHASE 
WRITE(6.1000) 
WRITE (8,1000) 

IF (ICUl') 141, 601, 141 
IPHASE = 2 

IBUG = 602 
WRI"E(6,lOOO) 
WRITE(8.1000) 
WftITE(6,1099) IBUG, IPHASE 
WRITE(8.1099) IBUG, IPHASE 
WRITE(6.1000) 
WRITE (8,1000) 
WRITE(6.1096) IBUG, "ID 
WRITE(8.1096) IBUG, mID 
WRITE(6.1000) 
WRITE(8.1000) 
WRITE(6.1011) IPHASE. TABS, TREL, PIMlX 
WRITE(8.1011) IHIASE, TABS, TREL, PINDX 

I m  = ISPEP + 1 
IF ("ID) 604, 604, 603 
"UP = J13DD(ISEP-l.NNID) 
IF (IPHASE) 996, 996, 605 
GO TO (608,608,608,996,608,606,608,996~, IPHASE 
IF (CVTID) 608, 608, 607 
CMTP = JMOD(ISTEP-1,CVTID) 
T =T+TSPEP 
TABS = T A B S + m P  
TREL = T R E L + m  
GO M 200 

C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 

Appendix C: TRAJ.FOR - 13 



SuBROuTINE JNtW (M, ME ,N, X, ACTIVE, F, G )  
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
c 
C 

C 

***** This subroutine computes the Perfomce Index PINDX and the 
constraints CCNI(II1) for Neural-Net Optimisation/Update during 
both the Learning and Controlled Trajectory Phases. 

***** The ' [LEYLAND.OpTIMNN]TYP~.INC" File is Included here. 
This file contains the statements which establish and define: 
1) the Principal CClMMCN Blocks: 2 )  the Data TYPE of the 
Principal Parameters, Arrays, and Vectors: and 3 )  the 
DIMiX3I(TJ of the Principal Arrays and Vectors of the 
0mIM" system. 

INCLUDE ' ~ ~ . 0 P r I M N N I T y p E c o b l . I N c '  

C 

C 

C 
C 
1000 
1001 
1071 
1072 
7011 
C 
C 

LOGICAL ACI'IVE(NCXX) 

-CWCl'R, ECW-TR, STATE. S"A!LBW 
-*E CWcrT, ECVCl'R, STATE, SX'A!LBW 

F'ORMAT(2HO 
FORMAT(2H1 1 
FORMAT(40HO ***** NOFMAL EXIT FROM JNtW ***** I / )  
FORMAT(39HO ***** ERROR EXIT FROM JNW *****//I 
FORMAT ( 4 D 2 0 . 7  ) 

C ***** Initialisation ***** 
C 

10 
11 

12 

13 

14 

C 

JERR = o  
IF (IPHASE) 996, 996, 10 
GO To (11,11,11,996,12,12,12,996), IPHASE 
ICVDEF = 2 
1- = 1 
NIJKCV = NIJ'KCVL, 
GO TO 13 
ICVDEF = 4 
1- = 2 
NIJKCV = NIJKCVC 
M) 14 IJK=l,NIJKCV 
cv(1JK) = X(1JK) 
CONTINUE 

C ***** Unload the Control Vector CV(I1) ***** 
C 

CALL cwcTR(xDuM.JERR) 
IF (JERR .NE. 0) GO M 996 

C 
C ***** Determine State from Neural-Net Model ***** 
C 

SARG = ZERO 
DO 30 L=l,IB?H 
CALL S'IATE"(XD(1.L) .YYN,JERR) 
IF (JERR .NE. 0) GO M 996 

Appendix C: JNNW.FOR - 1 



Do 15 J=l,NL2(2) 
YYA(J) = YD(J.L) 

15 CONTINUE 
C 
c ***** Load the End Conditions Vextor EC(JJ) ***** 
C 

21 

22 
30 

C 

CALL ECVCTR(L,WA,YYN,JERR) 
IF (JERR .NE. 0)  GO TO 996 
SUMSQW(L) = suMsQ 
GO TO (21,21,21,996,22,22,22,996), IPHASE 
SARG = SARG + wTSNNL(L)*suMsQW(L) 
GO To 30 
SARG = SARG + wTSNNC(L)*SUMSQW(L) 
CONTINUE 
SUMSQ = SARG 

C ***** Define the Performance Index PINDX ***** 

C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 

Appendix C: JNNW.FOR - 2 



3 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 

C 

C 
C 

SUBROVTINE JCTRL (M, ME, N, X, ACTIVE, F , G) 

***** This subroutine computes the Performance Index PINDX and the 
constraints m(II1) for Control Optimisation/Update during 
the Controlled Trajectory Phase. 

***** Start suBRoIlTINE JCTRL ***** 

***** The ~[LEXLAND.0FTIB"]TypEcoM.INc' File is Included here. 
This file contains the statements which establish and define: 
1) the Principal Blocks: 2) the Data TYPE of the 
Principal Parameters, Arrays, and Vectors; and 3 )  the 
DIKEXSICBI of the Principal Arrays and Vectors of the 
O P T I m N  System. 

INCWIDE '[LEYLAND.O~IMNNlTypEcoM.INc' 

1000 
1001 
1071 
1072 
7011 
C 
C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

FORMAT(2HO 
FORMAT(2Hl 
FORMAT(41HO ***** NORMAL EXIT FROM JcTRt ***** / / I  
FORMAT(40HO ***** ERROR EXIT FRCM JCTRL *****/ / )  
FORMAT ( 4D2 0.7 ) 

***** Initialisation ***** 

10 

11 

JERR = o  
ICVDEF = 6 
IECDEF = 3 
Do 10 II=l,NICV 
CV(I1) = X(I1) 
CONTINUE 
Do 11 I=l,NL2(1) 
xN(1) = xD(I.1) 
cxxwINuE 

***** Unload the Control Vector CV(I1) ***** 

CALL cwcra(xN,JERR) 
IF (JERR .NE. 0) GO To 996 

***** Determine State from Neural-Net Model ***** 

CW STATENN(XN,YN.JERR) 
IF (JERR .NE. 0) GO TO 996 

***** Load the End Conditions Vextor EC(JJ) ***** 

cw ~ ( L D u M . y D u M , Y N . J E R R )  
IF (JERR .NE. 0) GO To 996 

***** Define the Performance Index PINI))( ***** 

Appendix C: JCTRL-FOR - 1 



PINDX = SUMSQ 
I? = PINDX 
IF (NCONC) 997, 997, 100 

C 
C ***** Compute Constraint V e c t o r  Function CON(II1) ***** 
C 

C 
100 

101 

102 
C 

C 

I11 = 0 
"c = 0 
Do 102 I=l,NL2(1) 
IF (ICONC(1) 1 102. 102, 101 
I11 = I11 + 1 
IARG = ICONC(1) 
~ ~ ( 1 1 1 )  = m C ( 1 )  *SMAXC(I) - =(I) 'XA(1) - XA(1ARG) *XA(IARG) 
G(II1) = CON(II1) 
CONTINUE 
"c = I11 
Go To 997 

C ***** Error Exit 
C 
996 WRITE(6.1072) 

WRITE(8,1072) 
Go To 999 

C 
C ***** Normal Exit 

***** 

*et** 

c 
997 CONTRJclE 

C WRITE(6,1071) 
C WRITE(8.1071) 
C c ***** *****  
C 
999 RFIURN 

END 

C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 

Appendix C: JCTRL.FOR - 2 



SUBRrnINE cvVcra(X.JERR)  
C 
C 
c ***** This subroutine either Loads the Control Vector FROM the 
C principal Parameters in the OPTIMNN System if ICVDEF = 1, 
C 3, or 5, or Unloads the Control Vector To the appropriate 
C principal Parameters in the OPTIM" System if ICVDEF = 2, 
C 4. or 6. 
C 
c 
c ***** start SuBROvTINE CWCPR ***** 
C 
C 
C 
C ***** The ~[[LEyLAND.OPTIM"JTYPECCM.INc' File is Included here. 
C This file contains the statements which establish and define: 
C 1) the Principal CGMMON Blocks; 2) the Data TYPE of the 
C Principal Parameters, Arrays, and Vectors; and 3) the 
C D-ICW of the Principal Arrays and Vectors of the 
C O P T I m N  system. 

C 

C 

C 
C 

I-*4 I, J, JERFt, K, NIJKCV 

REAL*8 X(NL2DIM) 

1000 FOfPPLT(2HO 
1001 m T ( 2 H 1  
1071 FOfPPLT(42HO ***** NORMAL EXIT FRCM CWCTR ***** / / )  
1072 FORHAT(41HO ***** ERROR EXIT FROM CWCTR ***** / I )  
701 1 FORMAT ( 4D20.7 
C 
c 
C ***** Initialisation ***** 
c 

JERR = o  
GO TO (100,100,100,100,200,200,996). ICVDEF 

C 
C ***** Load or unload the Control Vector CV(1JK) during Neural-Net 
C Optimisation/Update. 
C 
100 IJK = 0 

NIJKCV = 0 
DO 130 K = 1.M 
DO 120 I = l,NI(K) 
DO 110 J = l,NJ(K) 
GO TO (101,101,102,102,996,996). ICVDEF 

101 IF (IJ'KCVL(1,J.K)) 110,110,103 
102 IF (IJKCVC(1,J.K)) 110,110,103 
103 IJK = IJK + 1 

GO M (104,105,104.105,996.996.996,996~, ICVDEF 
C 
C ***** Load the Control Vector CV(IJK) ***** 
C 
104 CV(IJK) = CW(1,J.K) 

Go To 110 
C 
C ***** Unload the Control Vector CV(IJK) ***** 
C 
105 CW(1,J.K) = CV(1JK) 
110 CONTINUE 
120 CONTINUE 
130 CONTINUE 

NIJKCV = IJK 

Appendix C: CWCTRFOR - 1 



GO To (141,141,142,142,996,996,996). ICVDEF 
141 NIJKCVL = IJK 

Go To 997 
142 NIJKCVC = IJK 

GO To 997 
C 
C * * * * *  Load or Unload the Control Vector CV(I1) during Control 
C Optimisation/Update. 
C 
200 I1 = 0 

NICV = 0 
Do 210 I = 1,NLl2(1) 
IF (ICV(1)) 210, 210, 201 

GO M (996,996,996,996,202,203,996). ICVDEF 
201 I1 = I1 + 1 

c 
C ***** Load the Control Vector CV(I1) ***** 

202 Cv(I1) = X ( 1 )  
Go M 210 

C 
C * * * * *  Unload the Control Vector CV(I1) * * * * *  
C 

203 X ( 1 )  = CV(I1) 
210 CONTINUE 

NICV = I1 
Go To 997 

C 
C * * * * *  Error Exit .***** 
C 

996 WRITE(6,1072) 
WRITE(8,1072) 
Go To 999 

C 

C 

C WRITE(6,1071) 
C WRITE(8,1071) 
C 

C 

C * * e * *  N0-l &it ***** 

997 CONTINUE 

C ***** =IT * * * * *  

999 RETURN 
END 

C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 

Appendix C: CWCTFLFOR - 2 

i 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

***** This subroutine Loads the End Conditions Vector FROM the 
appropriate Principal Parameters in the O F T I M "  -tan 
ans Sums the Squares of selected End Conditions to define 
the Core of the Perfonmnce Index if IECDEF = 1, 2. or 3. 

***** start SUBRrnINE ECVCPR ***** 

***** The [LG~LAND.OPTIMWI"PECXM.INC~ File is Included here. 
This file contains the statenents which establish and define: 
1) the Principal C€MKN B l o c k s ;  2) the Data TYPE of the 
Principal Parameters, Arrays, and Vectors; and 3 )  the 
DIM3EION of the Principal Arrays and Vectors of the 
OETIMW System. 

INFBSER'4 J, JERR, L. NJJB2 

REAL*S WP, WA(NL2DIM). YYN(NL2DIM) 

1000 
1001 
1071 
1072 
7011 
C 
C 

FORMAT(2HO ) 
FORMAT(2H1 ) 
RXWAT(4WO ***** "AL EXIT FRCN ECVCTR * * * * * I / )  
FORMAT(41HO ***** ERROR EXIT FRCM ECVCPR ***** / / )  
FORWiT(4D20.7) 

c ***** 
C 

JERR 
G O T 0  

C c * * * *e  

c 
C 
100 

101 

102 

103 
C 

JJJ 
N J J K  
SUMsQ 

Initialisation ***** 

= o  
(100,100,200,996), IECDEF 

Load the End Conditions Vector EC(JJJ) during Neural-Net 
Optimisation/Update. 

= o  
= o  
= ZERO 

Do 1iO J = l,NL2(2) 
GO To (101,102,200,996), IECDEF 
WP = W"L(J) 
IF (JJECLIJ)) 110,110,103 
WT = WINNC(J) 
IF (JJECC(J)) 110,110,103 
JJJ = JJJ + 1 

C ***** Load the End Conditions Vector EC(JJJ) ***** 
C 

ECfJJJ) = YYN(J) - YYA(J) 
SUMSQ = SUMSQ + WI'*EC(JJJ)*EC(JJJ) 

110 CCBVTINUE 
Go To (111,112,996,996). IECDEF 

111 NJJEXL = JJJ 
Go To 997 

112 NJJEC = JJJ 
Go To 997 

C 
C ***** Load the End Conditions Vector EC(JJ) during Control 
C Optimisation/Update. 
C 

Appendix C ECVCTRFOR - 1 



200 JJ = 0 
N J E c = o  
SUMsQ = ZERO 
Do 210 J = l,NL2(2) 
IF (JEC(J)) 210, 210. 201 

201 JJ = JJ + 1 
C 
C * * * * *  Load the End Conditions Vector EC(JJ) ***** 
C 

EC(JJ) = YYN(J) 
suMsQ = SUMSQ + WrC(J)*EC(JJ)*EC(JJ) 

huEc = JJ 
Go To 997 

210 CONTINUE 

C 

C 
C ***** Error mit * * * * *  

996 WRITE(6,1072) 
WRITE(8,1072) 
Go To 999 

C 

C 

C WRITE(6.1071) 
C WRITE(8.1071) 
C 

C * * * * e  No-1 &it * * e * *  

997 CONTINUE 

C * * * * e  =IT * * * * e  

C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C234567890123456789012345678901234567890123456789012345678901~345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 

Appendix C: ECVCTR.FOR - 2 

~~ ~ 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 

C 
C 

***** This subroutine Determines 
Control and the Neural-Net 
Model. 

***** Start SUEHOWl'INE STAl" 

the State as a Function of the 
Parameters using the Neural-Net 

***** 

***** The ~ I ~ . O F T I M " l T Y P E C a M . I N c "  File is Included here. 
Tfiis file contains the statements which establish and define: 
1) the Principal C" Blocks; 2 )  the Data TYPE of the 
Principal Parameters, Arrays, and Vectors; and 3 )  the 

1000 
1001 
1071 
1072 
7011 
C 
C 

DIMENSION of the Principal Arrays and 
O F T I M "  System. 

INCLUDE ' [LEXLAND.0~1"YF'~ypEcoM.INc' 

EXTERNAL P-0, PFNCMl. ~ m 0 2 .  PFNcT03 
-*E P-0, PFNcTol, PFNCT02, PF"03 

J!XXWiT(2HO 1 
m T ( 2 H 1  
FORMAT(43HO ***** WRWU EXIT FRCM STATE" 
FORMAT(42HO ***** ERROR EXIT FROM STATE" 
FORMAT (4D20.7 

Vectors of the 

***** / / )  
* **** / / )  

C ***** Initialisation ***** 
C 

C 
C ***** Evaluate for Each Layer. 
C 

C 
C ***** Determine the Origin Signals for Each Neural-Net Layer, 
C Origin Position, and Destination Position. 
C 
C ***** Evaluate for Each Origin Position. 
C 

C 
C ***** Evaluate for Each Destination Position. 
C 

C 

JERR = o  

Do 310 K = l , N K  

DO 120 I=l.NI(K) 

DO 110 J = l . N J ( K )  

IF ( K - 1 )  111,111,112 

Go 113 110 
111 XNN(1,J.K) = X ( I )  

112 XMJ(1,J.K) = Y N N 1 I . K - 1 )  
C 

C 

C 
C ***** Determine the Destination Signals for Each Neural-Net Layer, 
C Origin Position, and Destination Position. 
C 

110 CONTINUE 

120 CONTINUE 

Appendix C: STATENN.FOR - 1 



c **e** Evaluate for Each Destination Position. 
C 

C 

C 
C *****  Evaluate for Each Origin Position. 
C 

DO 210 J=l,NJ(K) 

UNN(J,K) = ZERO 

DO 220 I=l,NI(K) 
UNN(J,K) = UNN(J,K) + CW(I,J,K)*XNN(I,J,K) 

220 CONTINUE 
C 
C ***** Input the Destination Signal to the Selected Neural-Net 
C Pass-Through Function (i.e., Neural-Net Node Filter). 
C 

GO TO (231,232,233,234), "CT(J,K)+l 
c 
C *****  The No-Pass (i.e., the Constant Function) Neural-Net Node 
C Filter Function. 
C 
231 CALL PFNCrOO(J,K,JERR) 

IF (JERR) 996,210,996 
C 
C ***** The Direct-Pass (1.e.. the Linear Function) Neural-Net Node 
C Filter Function. 
c 
232 CALL PFNCTOl(J,K,JEZR) 

IF (JERR) 996,210,996 
C 
C * * * * *  The Hyperbolic Tangent (i.e., the Threshold Function) 
C Neural-Net Node Filter Function. 
C 
233 CALL PFNCl"02(J,K,JERR) 

IF (JERR) 996,210,996 
C 
C * * * * *  The First Derivative of the Hyperbolic Tangent (i.e., the 
C Pulse Function) Neural-Net Node Filter Function. 
C 
234 CALL PFNCr03(J,K,JERR) 

IF (JERR) 996,210,996 
C 

C 
210 CONTINUE 

310 CONTINUE 
c 
C +****  Determine the Neural-Net Model Output Vector 
C 

DO 410 J=l.NJ(NK) 
Y(J) = Y"(J,NK) 

410 CONTINUE 
C 

C 

C 

Go To 997 

C i r t * * t  Error Exit * * * * *  

996 WRITE(6.1072) 
WRITE (8,1072) 
Go To 999 

C 

C 

C WRITE(6.1071) 
C WRITE(8,1071) 
C 

C 

C +****  No-1 -it ****e 

997 CONTINUE 

C * * * * e  =IT *****  

999 RETmN 
END 

Appendix C: STATENN.FOR - 2 



C2345678901234567090123456789012345678901234567090123456709012345678901234567090 
C2345678901234567090123456789012345678901234567090123456789012345670901234567090 
C2345678901234567890123456709012345678901234567090123456709012345670901234567890 

Appendix C: STATENN.FOR - 3 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 
C 

***** This subroutine Defines the No-Pass (i.e., the Constant 
F'unction) Neural-Net Pass-Through Function (i.e., Node 
Filter) - 

***** Start SuBROvTINE PFNCTOO ***** 

***** The "[LEYLAND.OFTlM"lTYPECcM.INc" File is Included here. 
This file contains the statements which establish and define: 
1) the Principal K" Blocks: 2) the Data TYPE of the 
principal Parameters, Arrays, and Vectors; and 3 )  the 
DIMXSICN of the Principal Arrays and Vectors of the 
OPTIMm System. 

INCLUDE ' [LeyLAND.0FTIMNN1TYPEcaM.INc' 

INIM;ER*4 J, JERR, K 

1000 
1001 
1071 
1072 
7011 

C 
C 

FOWI&T(2HO ) 
FORMAT(2H1 ) 
WRMAT(43HO ***** NORMAL EXIT mOM PFNCTOO * * * * * / / I  
FORMAT(42HO ***** ERROR EXIT FFUlY PFNCTOO ***** / / )  
FORMAT(4D20.7) 

Initialisation ***** 

= o  

Evaluate the Destination Signal to the J-th Destination 
Position of the K-th Neural-Net Layer. 

YNN(J.K) = YNO(J.K) + CN(J.K) 

IF (JERR) 996,997,996 
C 

C 
c ***** Error Exit *e*** 

C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 

Appendix C: PFNCTOO.FOR - 1 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

***** This subroutine Defines the Direct-Pass (i.e., the Linear 
Function) Neural-Net Pass-Through bction (1.e.. Node Filter). 

***** Start suBRoI]TINE PFNCTOl ***** 

***** The [LeYLAND.OPrIM"lTYFECU4.INC~ File is Included here. 
This file contains the statements which establish and define: 
11 the ptincipal Blocks; 2) the Data TYPE of the 
Principal Parameters, Arrays, and Vectors; and 3 )  the 
DIMENSION of the Principal Arrays and Vectors of the 
O P r I M m  System. 

I"EGER*4 J. JERR. K 

-*E AA. ARG. BB, CC, DD, RrxID, W 

1000 FQRMAT(2HO 
1001 FORMAT(2H1 ) 
1071 FORMAT(43HO ***** NORMAL EXIT FROM PFNcMl * * * * * / / I  
1072 FORMAT(42HO * * * * *  ERROR EXIT FROM PFNcTOl * * * * * I / )  
7 011 FORMAT (4D2 0.7 
C 
C 
C ***** Initialisation ***** 
C 

JERR = o  
c 
C ***** Select Method of Defining Model Constants. ***** 
C 

DD = DN(J,K) 
IF (DDCTENp6--1 100,200,200 

C 
C ***** Input Model Constants Directly. ***** 
C 

100 AA = AN(J,K) 
CC = CN(J,K) 
Go To 202 

C 
C ***** Define Model Constants from Geometrical Considerations. ***** 
C 
200 ARG = CN(J,K) - AN(J,K) 

201 FA = (DN(J,K) - BN(J,K))/ARG 
IF (DABS(ARG)-TENM6) 996,201,201 

CC = M(J,K) - YNO(J,K) - AA*(CN(J.K) - XNO(J,K)) 
C 
C ***** hraluate the Destination Signal to the J-th Destination 
C Position of the K-th Neural-Net Layer. 
c 
202 YNN(J,K) = YNO(J,K) + AA*(U"(J,K) - XNO(J.K)) + CC 

C 

C 
c ** *e*  Error &it ***** 
C 

Go To 997 

996 WRITE(6,1072) 
WRITE (8,1072) 
Go To 999 

C 

Appendix C: PFNCTOl .FOR - 1 



c 
999 RETURN 

END 

C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456?89012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567~90 

Appendix C: PFNCTOl .FOR - 2 

~~ ~ 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

***** This subroutine Defines the Hyperbolic Tangent (i.e., the 
Threshold Function) Neural-Net Pass-Through Function (i.e., 
Node Filter). 

***** start SuBRPIpTINE PFNcp02 ***** 

***** The '[LGyLAND.OpTIM"]'l"ECCM.INC" File is Included here. 
This file contains the statements which establish and define: 
1) the h-incipal CON Blocks; 2) the Data W E  of the 
Principal Parameters, Arrays, and Vectors; and 3) the 
DIMENSION of the principal Arrays and Vectors of the 
OPTlImN system. 

I"EETP4 J, 3ERR. K 

m * 8  AA. ARG. m 9 0  

1000 FORMAT(2HO 
1001 FORMAT(2H1 1 
1071 FORMAT(43HO *****  
1072 FORMAT(42HO ***** 
7 01 1 FQRMAT (4D20.7 
C 
C 
C ***** Initialisation 
C 

C 
JERR = o  

NORMAL EXIT FROM PFNCT02 * * * * * / / I  
ERROR EXIT FROM PF"02 * * * * * / / I  

***** 

C ***** Select Method of Defining Model Constants. ***** 
C 

C 
C ***** Input Model Constants Directly. ***** 
C 

IF (BN(J,K)-m) 100,200,200 

100 AA = AN(J,K) 
GO TO 204 

C 
C ***** Define Model Constants from Geametrical Considerations. I**** 

C 
200 IF (AN(J,K)-m) 996,201,201 
201 m990 = ONE - TRm2 

IF (PT990-AN(J.K)) 996,202,202 
202 IF (EH(J,K)-m) 996,203,203 
203 ARG = (ONE + AN(J,K))/(ONE - AN(J.K)) 

AA = (PTSOO/BN(J,K))*DLOG(ARG) 
C 
C ***** Function hmluation ***** 
C 
204 YNN(J,K) = YNO(J,K) + C N ( J , K ) * D T A " ( A A * ( U " ( J . K ) - X N O ( J , K ) )  1 

GO To 997 
C c ***** Error Exit ***** 
C 
996 WRITE(6.1072) 

WRITE (8,1072 1 
Go To 999 

C 
C ***et No-1 &it ****e 

Appendix C: PFNCTO2.FOR - 1 



C 

C WRITE(6.1071) 
C WRITE (8,1071) 
C 

C 

997 CONTINUE 

C t f * * *  =IT * * * * *  

999 RETURN 
END 

C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 

Appendix C: PFNCT02.FOR - 2 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 
1000 
1001 
1071 
1072 
7011 
C 
C 

***** This subroutine Defines the First Derivative of the Hyperbolic 
Tangent (i-e.. the Pulse Function) Neural-Net Pass-Through 
Function (i.e., Node Filter). 

***** Start suBRovTINF. m 3  **I** 

***** The .[LEYLAND.OPTIMNNlTYPECX34.INC” File is Included here. 
This file contains the statements which establish and define: 
1) the Principal Ct2MX.l Blocks; 2) the Data TYPE of the 
principal Parameters, Arrays, and Vectors; and 3) the 
DIMINSIm of the Principal Arrays and Vectors of the 
OPTIMNN System. 

INCLUDE ’ [ L E y L A N D . 0 P T I M ” 1 T Y P ~ . I N c ’  

lWTDZEFP4 J, JERR, K 

REAL*B AA. ARG, m 9 0  

FORMAT(2HO 
FORMAT(2H1 ) 
FORMAT(43HO ****I NOFMAL, EXIT FROM PEW303 ***** / I )  
FORMAT(42HO ***** ERROR EXIT FRCM PFNcT03 ***** / / )  
FOIMAT (4D20.7 

C ***** Initialisation ***** 
C 

C 
C ***** Select Method of Defining Model Constants. ***** 
C 

C 
C ***** Input Model Constants Directly. ***** 
C 

JERR = O  

IF (EN(J,K) 100.100.200 

100 AA = AN(J,K) 
GO TO 204 

C 
C ***** Define &fodel Constants fran Geanetrical Consideratians. ***** 
C 
200 IF ( A N ( J , K)-W) 996,201,201 
201 PT990 = ONE - TmM2 

IF (PT99O-AN(J.K)) 996,202,202 
202 IF ( B N ( J , K ) - W) 996,203,203 
203 ARG = ?WO/DSQRT(AN(J,K)) - CNE 

AA = (PT500/BN(J.K) )*DIM:(ARG) 
c 
C ***** mction Evaluation ***** 
C 
204 ARG = ONE/DCOSH(AA*(U”(J,KI-XNO(J,K)I) 

Y”(J,K) = YNO(J,K) + AA*CN(J,K)*ARG*ARG 
Go TO 997 

C 
c * i t * * *  &Tor -it ***** 

996 WRITE(6.1072) 
WRITE (8,1072 1 
Go TO 999 

C 

Appendix C: PFNCT03.FOR - 1 



C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 

Appendix C: PFNCT03.FOR - 2 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

***** This subroutine Determines the 'Actual' (i.e., Reference) 
plane -1 (i.e., Definition of the Control and State as 
a Function of Time). 

***** Start SuBROzrrINE STATE ***** 

***** The '[L?XLAND.OpTlM"lTypECaM.INc' File is Included here. 
"his file contains the statements which establish and define: 
1) the Principal c(MMJN Blocks; 2) the Data TYPE of the 
Principal Parameters, Arrays, and Vectors; and 3) the 
DIMENSIOBJ of the Principal Arrays and Vectors of the 
0mIMNN System. 

INCLUDE ' [LEyLAND.OpTIMNNITYP~.INC'  

1000 FORHAT(2HO 1 
1001 FORMAT(ZH1 1 
1071 FORMAT(41HO ***** NORMAL EXIT F'RCM STAm ***** / / )  
1072 FORMAT(40HO ***** ERROR EXIT FRCM STATE * * * * * / / I  
7011 FORMAT(4D20.7) 
C 
C 
C ***** Initialisation ***** 

JERR = o  
C 
C ***** Select Source for Control/State Definition. 
C 

IF (IPHASE) 996,996,100 
100 GO TO (101,101,101,996,102,102,102,996). IF'HASE 
101 GO TO (111,112,113,114). SIMODL 
102 GO TO (111,112,113,114). SIMODC 

c 
C ***** Synthesis the 'Actual" (i-e., Reference) Plant Model by 
C 
C 

Combining Selected Individual Analytic Models. 

111 CALL ASTATE(X,Y,JERR) 
IF (JERR) 996,997,996 

C 
C ***** Defines the "Actual' (i.e., Reference) Plant Model from 
C On-Line Test Data. 
C 

112 CALL DSTATE(X.Y,JERR) 
IF (JERR) 996,997,996 

C 
C ***** Defines the "Actual' (1.e.. Reference) Plant Model from 
C Stored Data Tables 
C 

113 CALL TSTATE(X.Y,JERR) 
IF (JERR) 996,997,996 

C 
C ***** Defines the "Actual" (i.e., Reference) Plant Model from 
C a User Supplied Model. 
C 
114 CAU USTATEIX,Y,JERR) 

IF (JERR) 996,997,996 

Appendix C: STATE.FOR - 1 



C 
Go To 997 

c 
C ***** Error bit 

996 WRITE(6,1072) 
WRITE(8.1072) 
Go To 999 

C 
C *****  Normal Exit 
C 

C WRITE(6,1071) 
C WRITE(8,1071) 

997 CONTINUE 

C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 

Appendix C: STATE.FOR - 2 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 

C 
C 

***** This subroutine Synthesises (i.e., Defines) the 'ACTUAL' 
(i-e., the Reference) Plant Model including both Input and 
Output Signals by Combining Selected Individual -lytic 
Models (i.e., ASTATEOl, ASTATEOZ, ASTAm03, *, *, *, * )  

***** Start SuBROvTINE ASTAm ***** 

***** The ~(LeyLANO.0~~1TYPECCX4.INC' File is Included here. 
This file contains the statements which establish and define: 
1) the h-incipal Blocks: 2) the Data TYPE of the 
Principal Parameters, Arrays, and Vectors: and 3 )  the 
D-ICN of the Principal Arrays and Vectors of the 
0mM" System. 

INCLUDE ' [ L E Y L A N D . O P T I M N N I T Y P ~ . I N C '  

I ~ E W 4  IARG, JERR, L1. L2, L3 

ASTATEOl, ASTATE02, ASl'ATE03, ASTATEO4, ASTATEOS, 

XE?iL* 8 ASTATEOl, ASTATE02, ASl'Al7203, ASTATEOI , ASl'A"E05, 
1 AsTATE06, ASTATE07, ASTATRAN 

1 ASTATE06, AspATE07, ASTATRAN 

1000 MRMAT(2HO ) 
1001 FORMAT(2Hl 1 
1071 FORMAT(42HO ***** NORMAL. EXIT FROM ASTATE ***** / / )  
1072 MRMAT(41HO ***** ERROR EXIT FROM ASTATE * * * * * / / I  
701 1 FOFU4AT ( 4D2 0.7 
C 
C 
C ***** Initialisation ***** 
C 

C 
C ***** Evaluate for Both the Plant Input and Plant Cutput Vectors ***** 
C 

C 
C ***** Evaluate for Each Vector Elenent ***** 
C 

J E R R = o  

DO 310 L1=1.2 

IF (L1-2) 373, 371, 996 
371 IF ("ID) 372, 372, 373 
372 CALL STAm(X,Y,JERR) 

IF (JERR .NE. 0) GO TO 996 
GO To 310 

ARG = ZERO 
IF (NL3(L2,Ll)) 200,200,180 

373 Do 210 L2=1,NL2(Ll) 

C 
C ***** hraluate Each Individual Primary Analytic Model ***** 
C 

180 DO 190 L3=1,NL3(U,Ll) 

C ***** Select the Primary Analytic Model ***** 
C 

IARG = IFU"(L3,U,Ll) + 1 
GO To (100,101,102,103,104,105,106,107,996), IARG 

C 

Appendix C: ASTATE-FOR - 1 



C ***** The Random Uniform Distribution Function ***** 
C 
100 CALL ASTATRAN (L3, L2, L1,1, Y Y ,  JERR) 

IF (JERR) 996,150,996 
C 
c ***** The Linear Function (i.e., the Ramp Function) ***** 
C 
101 CALL ASTATEOl(L3.L2,Ll,YY,JERR) 

IF (JERR) 996,150,996 
C 
C ***** The Serpentine Curve Function ***** 
c 
102 CALL ASTATE02(L3,L2,Ll,YY,JERR) 

IF (JERR) 996,150,996 
C 
C *****  The Witch of Agnesi Function ***** 
C 
103 CALL ASTATE03(L3,L2,Ll,YY,JERR) 

IF (JERR) 996,150,996 
C 
C ***** The Inverted Witch of Agnesi Function ***** 
c 
104 CALL ASTATEOI(L3,L2,Ll,W,JERR) 

IF (JERR) 996,150,996 
C 
c * * * * *  The meloped Sinusoidal Function ***** 
C 
105 CALL ASTATE05(L3,L2,Ll,W,JERR) 

IF (JERR) 996,150,996 
C 
C * * * * *  The Hyperbolic Tangent Function (1.e.. the Threshold Function) 
C 
106 CALL ASTATEO6(L3,L2,Ll,YY,JERR) 

IF (JERR) 996,150,996 
C 
C ***** The First Derivative of the Hyperbolic Tangent Function (l.e., 
C the Pulse Function) 
C 
107 CALL ASTATE07 (L3, L2, L1, YY, JERR) 

IF (JERR) 996,150,996 
c 
c * * * * *  Randomise the Primary Analytic Function Just Evaluated * * * * *  
C 
150 IF(DABS(M(L3.L2,Ll))-TENMB) 151,151,154 
151 IF(DABS(B2(L3,L2,Ll))-TME) 152,152,154 
152 IF(DABS(C2(L3,L2,Ll))-TENMB) 153,153,154 
153 IF(DABS(D2(L3,L2,Ll))-TENME) 155,155,154 
154 CALL ASTATRAN (L3, L2, L1,2, YY, JERR) 

IF (JERR) 996,155,996 
c 
C * * * * *  Sum the Primary Analytic Functions Evaluated To-Date * * * * *  
C 

C 
155 ARG = ARG + YY 

190 COUTINUE 
C 
C * * * * *  Randomise the Combined Primary Analytic Models to Yield the 
C 
C 
200 
201 
202 
203 
204 

205 
206 

207 

Final Result 

IF(DABS(A3(L2,Ll))-TME) 201,201,204 
IF(DABS(B3(L2,Ll))-TENME) 202,202,204 
IF(DABS(C3(L2,Ll))-TENMB) 203,203,204 
IF(DABS(D3(L2,Ll))-TENME) 205,205,204 
CALL ASTATRAN (L3, L2, L1,3, ARG, JERR) 
IF (JERR) 996,205,996 
GO TO (206.2071, L1 
X(L2) = ARG 
GO To 210 
Y(L2) = ARG 

Appendix C: ASTATE.FOR - 2 

~ ~~~ ~ 



C 

C 

C 

C 

C 

210 ax?ImuE 

310 CONTINUE 

Go 'ID 997 

C ttttt Error -it ttttn 

996 ~~ITE(6.1072) 
WRITE(8,1072) 
Go 'ID 999 

C 

C 

C WRITE(6.1071) 
C WRITE(8.1071) 
C 

C 

C ttttt N0-l =t *t*tt 

997 COWIINUE 

C ttttt W T  ttttt 

999 RFlvRN 
EM) 

C2345678901234567890123456789012345678901234567090123456789012345670901234567090 
C2345678901234567890123456789012345678901234567090123456709012345678901234567090 
C2345678901234567890123456789012345678901234567890123456789012345670901234567090 

Appendix C: ASTATE.FOR - 3 



~UBROVPINE ASTATRAN (L3, U , L1, Lcw . w, JEFW 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

***** This subroutine Defines the Uniform Distribution Rrnction 
which is one of the Individual Analytic Models available 
to be used in the Synthesis (i.e., the Definition) of the 
*ACTUAL* (i.e., the Reference) Plant -1 including both 
Input and Output Signals. 

***** Start SUBRWPINE ASTAT" ***** 

***** The ' I L E n a M , . O P T ~ l T y P ~ . I N c '  File is Included here. 
This file contains the statements which establish and define: 
1) the Principal CCBQ43l Blocks; 2) the Data TYPE of the 
Principal Parameters, Arrays, and Vectors; and 3) the 
DIMENSIOIV of the h-incipal Arrays and Vectors of the 
OPTIMNN System. 

INCLUDE ' [LEYLAND.O~IM"lTYPEYXW.INC' 

1000 FORMAT(2HO 
1001 m T ( 2 H 1  ) 
1071 'fOXWiT(44HO ***** NORMAL EXIT FROM ASTATRAN * * * * * / / )  
1072 FORMAT(43HO ***** ERROR EXIT FROM ASTATRAN ***** / / )  
7011 FoIplAT14D20.7) 
C 
C 
C ***** Initialisation ***** 
C 

m = o  
GO To (10,20,30,996), LCALL 

C 
c ***** The Random Uniform Distribution Function ***** 
C 

10 IS= = ISEEDl(L3,L2,Ll) 
C JSEED = JSEEDl (L3, L2 

AA = Al(L3.U.Ll) 
BB = Bl(L3,U.Ll) 

C CC = Cl(L3.U.Ll) 
C DD = Dl(L3,U,Ll) 

YR = YRl(L3,L2,Ll 
GO 'IW 103 

20 ISEED = ISEED2(L3,U 
JSEED = JSEED2 (L3.U 
AA = M(L3,U.Ll) 
BB = B2(L3,L2,Ll) 
cc = C2(L3.U.L11 
DD = D2lL3.U.Ll) 

L1) 

L1) 
Ll 1 

YR = YR2(L3,L2,Ll) 
GO M 100 

30 ISEED = ISEED3(L2,Ll) 
JSEED = JSFED3 (L2, L1) 
AA = A3(L2,L1) 
BB = B3(U.L1) 
CC = C3(U,Ll) 
DD = D3(U,L1) 
YR = W(L2,Ll) 

C 
c ***** Determine ARG2 ***** 

Appendix C: ASTATRAN.FOR - 1 



C 
100 IF (TENM6-DABS(W)) 103,101,101 
101 IF (TENM6-DABS (DD) ) 104,102,102 
102 IF (JSEED) 104,104,105 
103 ARGl = ZERO 

Go To 200 
104 ARG2 = CC 

Go To 200 
105 ARG2 = CC + DD*(?WO*RAN(JSEED) - ONE)*W 

C 
C ***** Determine ARGl *****  
C 
200 IF (TENMC-DABS(BB)) 202,201,201 
201 IF (ISEED) 202,202,203 
202 ARGl = AA 

GO TO 300 
203 ARGl .= AA + BB*(?WO*RAN(ISEED) - ONE) 

C c ***** Deternine yy ***** 
C 
300 W = YR + ARGl + ARG2 

c 
Go To 997 

C 
C ***** Error b i t  
C 
996 WRITE (6,1072 1 

WRITE (8,1072 ) 
GO To 999 

C 
C ***** Normal Exit 
C 

C WRITE(6.1071) 
C ~~ITE(8,1071) 
C 

997 CONTINUE 

C ***** =IT ***** 

*****  

*****  

c 
999 F3nJRN 

rn 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 

Appendix C: ASTATRAN.FOR - 2 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

***** This subroutine Defines the Linear i.e., the Ramp !?unction) 
Function which is One of the Individual -lytic Models 
available to be used in the Synthesis (i.e., the Definition) 
of the 'ACNAC' (1.e.. the Reference) Plant Model including 
both Input and Cutput Signals. 

***** Start SuBROuTINE ASTATEOl ***** 

***** The ~[LEYLAND.OPTIMNNlTYPECOM.INC" File is Included here. 
This file contains the statanents which establish and define: 
1) the Principal CCMWN B l o c k s ;  2) the Data TYPE of tl?& 
Principal Parameters, Arrays, and Vectors; and 3) the 
DIMENSION of the h-incipal Arrays and Vectors of the 
oPTR4uN System. 

INCLUDE ' [LEYLAND.OPTIMNNITYPECan.INc' 

INTEGER24 JERR, L1, L2, L3 

1000 
1001 
1071 
1072 
7011 
C 
C 

REAL*S AA. ARG. BB. 

FORMAT(2HO 
m T ( 2 H 1  ) 
FOFUYAT(44HO ***** 
FORMAT(43HO ***** 
FoRMAT(4D20.7) 

C ***** Initialisation 
C 

J E R R = o  

CC, DD, TMOD, YY 

NOFQ4AL W T  FROM AsTATEOl *****/ / )  
ERROR EXIT FROM ASTATEOl *****// !  

***** 

ARG = T - XO(L3,LZ.Ll) - HIAsE(L3,LZ.Ll) 
IF(PERIOD(L3,LZ,Ll)-TENM6) 996.996.11 

11 IF(PERIOD(L3,L2,Ll)-TENP6) 13.12.12 
12 RIOD = ARG 

Go To 14 
13 "MOD = cMOD(ARG,PEFtIOD(L3.L2,Ll)) 

c 
C ***** Select Method of Defining Model Constants. ***** 
L 

14 DD = D(L3,U.Ll) 
IF ( B T E X P 6 - m )  100,200,200 

C 
C ***** Input Model Constants Directly. * * * * *  
C 
100 AA = A(L3,U.Ll) 

cc = C(L3.LZ.Ll) 
Go To 202 

L 
c ***** Define Model Constants from the Co-ordinates of "bo Points. * * * * *  
C 
200 ARG = C(L3,U.Ll) - A(L3.U.Ll) 

IF (DABs(ARG)-TENMBI 996,201,201 
201 AA = (D(L3,LZ.Ll) - B(L3,LZ,Ll))/ARG 

CC = D(L3,LZ.Ll) - YO(L3,LZ,L1) - AA*(C(L3,L2,L1) - XO(L3,LZ,L1)) 
C 
C ***** Mction hraluation ***** 
C 
202 YY = YO(L3,LZ.Ll) + A?i*('IMOD - XO(L3,L2,Ll)) + CC 

Go To 997 

Appendix C: ASTATEOl .FOR - 1 



C 
C ***** Error bit 
C 
996 WRITE(6,1072) 

WRITE(8.1072) 
Go To 999 

C 
C * * * * *  Normal Exi t  

***** 

*****  

C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 

Appendix C: ASTATEO1 .FOR - 2 



SUBROUTINE ASTATEO2(L3,L2,L1,YY,JERR) 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

***** This subroutine Defines the Serpentine Curve Function which 
is One of the Individual Analytic Models available to be used 
in the Synthesis (i.e., the Definition) of the 'ACTUAL' (i.e., 
the Reference) Plant Model including both Input and Output 
Signals. 

***** Start SuBROzrrINE ASTATE02 ***** 

***** The '[LEyLRND.OpTIMNNITypEccM.INc' File is Included here. 
This file contains the statements which establish and define: 
1) the Principal CtXPK34 Blocks; 2 )  the D a t a  TYPE of the 
Principal Parameters, Arrays. and Vectors; and 3) the 
DIME3SION of the Principal Arrays and Vectors of the 
OPTIMNN Systan. 

I=ER*4 JERR, L1. U ,  L3 

REAL*8 AA. ARG, BB. TMOD, W 

1000 
1001 
1071 
1072 
7011 

C 
C 

FORMAT(2HO 1 
FORMAT(2Hl ) 
FORElAT(44HO ***** NoRMAt EXIT FROM ASTATE02 ***** / / )  
m T ( 4 3 H O  ***** ERROR EXIT FROM ASTATE02 ***** / / )  
FORMAT (4D20.7 ) 

C ***** Initialisation ***** 

J E R R = o  
ARG = T - XO(L3,L2,L1) - E(L3,L2,Ll) 
IF (PERIOD (L3, L2, L1) -TENM6 T 96,996,11 

11 IF(PERIOD(L3,L2,Ll)-TE"6) 13.12,12 
12 ?MOD = ARG 

GO TO 14 
13 TMOD = DMoD(ARG,PERIOD(L3,L2,L1)) 

14 IF (DABS(A(L3.U.L1))-=6) 996,996,15 
15 IF (DABS(B(L~,IA~.L~))-TFNM~) 996,996,100 

C 

C 
C ***** Input Model Constants Directly. ***** 
C 
100 AA = A(W,U,Ll) 

BB = B(L3,U.Ll) 
C 
C ***** Function Evaluation ***** 
C 

W = YO(L3,L2,Ll) + AA*BB*TmlD/(AA*AA + TMOD'IMOD) 
co To 997 

C 

C 

C ***** Error mit ***** 

996 WRITE (6,1072 1 
WRITE(8,1072f 
GO TO 999 

C 
c ***** Exit ***** 
C 
997 m I N u E  

Appendix C: ASTATE02.FOR - 1 



c 
999 RETURN 

END 

C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 

Appendix C: ASTATE02.FOR - 2 

~ ~~ ~ 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

***** This subroutine Defines the Witch of Agnesi Function which 
is One of the Individual Analytic Models available to be used 
in the Synthesis (i.e., the Definition) of the 'ACTUAL" (i-e., 
the Reference) Plant Model including both Input and Output 
Signals. 

***** Start SUBFtCUTINE AsTATE03 ***** 

***** The '[LEyLAND.OSTIMNN]l"WECCM.INC' File is Included here. 
This file contains the statements which establish and define: 
1) the Principal CCMWBJ Blocks; 2 )  the Data TYPE of the 
Principal Parameters, Arrays, and Vectors; and 3) the 
DIMENSION of the Principal Arrays and Vectors of the 
O P T m "  System. 

INCLUDE '~LFyLAND.oPTIMNNlTypEcoM.INc' 

IlWEGEX*4 JERR, L1, L2, L3 

REAL*8 AA. ARG, BB, CC, PT990, TMDD, W 

1000 
1001 
1071 
1072 
7011 
C 
C 

FORMAT(2HO 
FORMAT(2Hl ) 
FORMAT(44HO ***** NORMAL EXIT FRCXY ASTA'TE03 * * * * * / / I  
FORMAT(43HO ***** ERROR EXIT FRCM ASl'ATE03 ***** / I )  
FoRMAT(4D20.7) 

C ***** Initialisation ***** 
C 

J E R R = o  
ARG = T - XO(L3,L2,L1) - PHASE(L3,U.Ll) 
IF(PERIOD(L3,L2,L1)-~6) 996,996,ll 

11 IF(PERIOD(L3,U,Ll)-TENP6) 13.12.12 
12 TMOD = ARG 

GO To 14 
13 TMOD = EMOD(ARG,PERIOD(L3,L2,L1)) 

C 
C ***** Select Method of Defining Model Constants. ***** 
c 

14 AA = A(W,LZ,Ll) 
cc = C(L3.U.Ll) 
IF ( C C - m )  100,100,200 

C 
C ***** Input Model Constants Directly. ***** 
C 
100 BB = B(L3,LZ.Ll) 

GO To 202 
C 
C ***** Define Model Constants from Geometrical Considerations. ***** 
C 
200 PT990 = c%JE - TmM2 

201 BB = DSQRT( ( W E  - CC)/CC) 
IF (PT99O-CC) 996,201,201 

c 
C ***** Function Evaluation ***** 
C 
202 W = YO(L3,U.Ll) + AA*AA*AA/(BB*BB*RIOD*'IMOD + AA'AA) 

Go To 997 
C 

I 

Appendix C: ASTATE03.FOR - 1 



997 CONTINUE 
C WRITE(6,1071) 
C WRITE(8,1071) 
C 

C 

C *et** =IT * * * e *  

999 RETURN 
END 

C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 

Appendix C: ASTATE03.FOR - 2 

~~ 
~~ 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

***** This subroutine Defines the Inverted Witch of Agnesi Function 
which is One of the Individual Analytic Models available to be 
used in the Synthesis (1.e.. the Definition) of the 'ACTUAL" 
(i.e.. the Reference) Plant Model including both Input and 
Output Signals. 

***** Start SuBROvTINE mATEO4 ***** 

***** The wILEyLAND.OvPIM"lTYPEcoM.INc' File is Included here. 
"his  file contains the statements which establish and define: 
1) the Principal Blocks: 2) the Data TYPE of the 
Principal Parameters, Arrays, and Vectors; and 3) the 
DIMENSICXU of the Principal Arrays and Vectors of the 
0mIMNN System. 

II?lEG~*4 JERR, L1, L2, L3 

REAL*B AA, ARG, BB, CC, PT990, TMOD, W 

1000 
1001 
1071 
1072 
7011 
C 
C 

FORMAT(2HO 
m T ( 2 H 1  
m T ( 4 4 H O  ***** NORWiL EXIT FROM ASTATE04 * * * * * / / I  
FQRMAT(43HO ***** ERROR EXIT FRCM ASTATE04 ***** / / )  
FORMAT (4D20.7 

C ***** Initialisation ***** 
C 

J E R R = o  
ARG = T - XO(L3,L2,L1) - pHAsE(U.L2,Ll) 
IF(PERIOD(L3,U,Ll)-TE3R46) 996.996.11 

11 IF(PERIOD(L3,L2,Ll)-IWp6) 13,12,12 
12 TMOD = ARG 

GO To 14 
13 TMOD = nMOD(ARG,PERIOD(L3,L2,Ll)) 

C 
C ***** Select Method of Defining Model Constants. ***** 
C 

14 AA = A(L3,L2,Ll) 
CC = C(L3,L2,Ll) 
IF (CC-TENM2) 100,100,200 

C 
C ***** Input Model Constants Directly. ***** 
C 
100 BB = B(L3,U,Ll) 

GO To 202 
C 
C ***** Define Model Constants fran Geanetrical Considerations. ***** 
c 
200 m990 = ONE - TENM2 

201 BB = DSQRT(CC/(ONE - CC)) 
IF (pT990-CC) 996,201,201 

C 
C ***** Function Evaluation ***** 
C 
202 W = YO(L3,U.Ll) + AA*(oNE - AA*AA/(BB*BB*'IMOD*"DD + AA'AA)) 

GO To 997 
C 

Appendix C: ASTATE04.FOR - 1 



c 
997 CONTINUE 

C WRITE(6.1071) 
C WRITE(8.1071) 
C 

C 
c et*** =IT e* * * *  

999 I3E" 
END 

C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C234567890123456789012345678901234567890123456789~123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 

Appendix C: ASTATEM-FOR - 2 

~~ 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 
C 

***** This subroutine Defines the Enveloped Sinusoidal Function which 
is One of the Individual Analytic Models available to be used 
in the Synthesis ( i . e . ,  the Definition) of the 'ACTUAL' ( i . e . ,  
the Reference) Plant Model including both Input and Output 
Signals. 

***** Start SuBROuTINE ASTATEOS ***** 

***** The '[LEYLAND.O€TIM"]TYPEXXM.INC' File is Included here. 
This file contains the statements which establish and define: 
1) the Principal CC" Blocks; 2) the Data TYPE of the 
Principal Parameters, Arrays, and Vectors; and 3) the 
D-I(3N of the Principal Arrays and V e c r o r s  of the 
OPTIMNN System. 

INCLUDE ' [LEyLAND.0~IMNN1TYpEcoM.INC' 

II?"EER*4 JERR. L1, U, L3 

m f 8  AA. ALP, ARG, ARGl, ARG2, BB. CC, NW, =OS, TMP, ?MOD. W 

1000 MRMAT(2HO 1 
1001 FORMAT(2H1 1 
1071 FORMAT(44HO ***** NORMAL EXIT FRCM ASPATE05 *****/ / )  
1072 FORMAT(43HO ***** ERROR EXIT FROM ASPATE05 ***** I / )  
7011 MRMAT(4D20.7) 

C 
C 
C * * * * *  Initialisation ***** 

J E R R = o  
ARG = T - XO(L3,U.Ll) - PHASE(L3,L2,Ll) 
IF(PERIOD(L3 ,L2, L1) -TENM6) 996,996,ll 

11 IF(PERIOD(L3.L2,Ll)-"P6) 13,12,12 
12 TMOD = ARG 

13 TMOD = DMOD(ARG,PERIOD(L3,L2,Ll)) 
GO TO 100 

C 
C ***** Evaluation of the Exponential Part (i.e., ARGl) of the 
C Enveloped Sinusoidal Function. 

100 TEXP = TMOD - PSI(L3,L2,L1) 
AA = A(L3,L2.L1) 
BB = B(L3,U.LI) 
cc = C(L3,L2.L1) 
IF (DABS(AA)-m6) 101,101,110 

C 
C ***** Input Model Constants (i.e., ALpHA(L3,L2.L1)) Directly. ***** 
C 
101 = ALPHA(L3,L2,Ll) 

GO TO 113 
c 
C ***** Define Model Constants from Geometrical Considerations. ***** 
C 

110 IF(DABS(BB)-TRW6) 996,996,111 
111 IF(DABS(CC)-TEM36) 996,996,112 
112 ARG = DABS(BB/CC) 

ALP = (DLOG(ARG) ) /AA 

114 ARGl = CC*DEXP(ALP*"EXP) 
113 IF(DABS(ALP)-TE@M6) 115,115,114 

Appendix C: ASTATEO5.FOR - 1 



Go To 200 
115 ARGl = CC 

c 
c ***** Evaluation of the Sinusoidal Part (i.e., ARG2) of the 
C Enveloped Sinusoidal Function. 
C 
200 =OS = TMOD - PHI(L3,L2,Ll) 

IF (NN(L3, L2, L1) -TENp8) 201,203,203 
C 
C ***** Input the Harmonic Number [NN(L3,L2,Ll)] and %-Pi times the 
C Primary Frequency [OMEGA(L3.L2,Ll) I Directly. 
c 
201 NW = NN(L3,L2,Ll)*OMEGA(L3,L2,L1) 

IF (NW-TENM8) 205,205,202 
202 IF (NW-TENP8) 207,205,205 

C 
C **e** Input Sinusoidal Period [cMEGA(L3,L2,Ll)] Directly. * * * * *  
C 
203 IF (OMEGA(L3,L2,Ll)-TENPB) 204,205.205 
204 IF (OMM;A(L3,L2,Ll)-TENMB) 996.996.206 
205 ARG2 = ONE 

206 NW = ?woPI/cMEGA(L3,L2,L1) 
GO TO 300 

C 
C ***** hraluation of the Sinusoidal Part (1.e.. ARG2) of the 
C Enveloped Sinusoidal Function. 
C 

C 
C * * * * *  Function Evaluation *****  

207 ARG2 = DcOS(NW*TCOS) 

c 
300 YY = YO(L3,L2,Ll) + ARGl*ARG2 

GO TO 997 
C 

C 

c ****e Error &it ***** 

996 WRITE(6.1072) 
WRITE (8,1072 1 
Go To 999 

c 
C * * * e *  No-1 &it * * * * *  
C 

C WRITE(6,1071) 
C WRITE(8,1071) 
C 

C 

997 CONTINUE 

C e**** EXIT ***** 

999 RETURN 
END 

C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 
C2345678901234567890123456789012345678901234567890123456789012345678901234567890 

Appendix C: ASTATE05.FOR - 2 

~~~~ 


C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C

C

C
C

***** This subroutine Defines the Hyperbolic Tangent (i.e., the
Threshold Function) Function which is One of the Individual
Analytic Models available to be used in the Synthesis (i.e.,
the Definition) of the 'ACNAL' (i.e., the Reference) Plant
Model including both Input and Cutput Signals.

***** Start SUBROUl?INE ASTAl?306 *****

***** The ~[LEYLAND.OPTIMNNITYPEC€IM.INC' File is Included here.
This file contains the statements which establish and define:
1) the F'rincipal COMEXU B l o c k s : 2) the Data TYPE of the
Principal Parameters, Arrays, and Vectors; and 3) the
DIMENSION of the Principal Arrays and Vectors of the
O P T I m N System.

INCLUDE ' ILEYLAND.0PTIMNN1TypEcoM.INC'

INTEGER'4 JESR, L1, L2, L3

REAL'8 AA. ARG, PT990, TMOD, YY

1000 FORMAT(2HO
1001 FORMAT(2H1
1071 FORMAT(44HO ***** NORM?U, EXIT FRCM ASTATE06 ***** / /)
1072 FQRMAT(43HO ***** ERROR EXIT FRm AsTATE06 * * * * * / / I
7011 FORMAT(4D20.7)
C
C
C
C

C
C
C

C
C
C

C
C
C

C
C
C

*** Ini tialisation ** ***

J E R R = o
ARG = T - XO(L3.L2,L1) - PHASE(L3.L2,Ll)
IF (PERIOD(L3, U, L1) --6) 996,996,ll

11 IF(PERIOD(W,L2,L1)-TENF%) 13.12.12
12 TMOD = AUG

GO TO 14
13 TMOD = DMoD(ARG.PERIOD(L3,L2.L3~)

***** Select Method of Defining Model Constants. *****

14 IF (B(L3,L2,Ll)-=) 100,200,200

***** Input Model Constants Directly. *****

100 AA = A(L3,U.Ll)
GO TO 204

***** Define Model Constants fran Geometrical Considerations. *****

200 IF (A(L3,L2,Ll)-=) 996,201,201
201 PT990 = ONE - TJ3m2

I F (PT990-A(L3.L2,Ll)) 996,202,202
202 IF (B(L3,L2,Ll)-"M2) 996,203,203
203 ARG = (ONE + A(L3.L2,Ll))/(ONE - A(L3,L2,Ll))

AA = (PTSOO/B(L3,L2,Ll))*DLOG(ARG)

***** Function Evaluation *****

204 YY = YO(L3,U.Ll) + C(L3.L2,Ll)*"H(AA*?MoD)
co To 997

Appendix C: ASTATEO6.FOR - 1

999 m
END

C234567090123456709012345678901234567890123456709012345670901234567~901234567090
C2345678901234567890123456789012345670901234567090123456709012345670901234567090
C2345670901234567890123456709012345678901234567090123456709012345670901234567090

Appendix C: ASTATEO6.FOR - 2

SUBROUI'INE ASTATE07 (L3 , L2, L1, YY, JERR)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C

C

C
C
1000
1001
1071
1072
7011
C
C

***** This subroutine Defines the First Derivative of the Hyperbolic
Tangent (i.e., the Pulse Function) Function which is One of
the Individual Analytic Models available to be used in the
synthesis (i.e., the Definition) of the 'ACl'WAL' (i.e., the
Reference) Plant Model including both Input and Output Signals.

***** Start SJBROUTINE AS"ATE07 *****

***** The ~[ILEyLAND.OPTIM"]TypEcoM.INC' File is Included here.
This file contains the statements which establish and define:
1) the Principal CCMCN Blocks; 2) the Data TYPE of the
Principal Parameters, Arrays, and Vectors; and 3) the
DIMENSICN of the h-incipal Arrays and Vectors of the
0PTm system.

INCLUDE ' [LEYLAND.OPTIMNNlTYP~.INC'

I"BSER'4 JERR, L1, L2, L3

m * a AA, m ~ , ~ ~ 9 9 0 , TMOD, w

FORMAT(2HO 1
FORMAT(2H1)
FORMAT(44HO ***** NORMAL EXIT FRCM =ATE07 ***** / /)
FQRMAT(43HO ***** ERROR EXIT FROM ASPATE07 * * * * * / / I
FORMAT (4D20.7)

C ***** Initialisation *****
C

J E R R = o
ARG
IF(PERIOD(L3.L2,Ll)-TRW6) 996,996.11

= T - XO(L3,U.Ll) - PHASE(L3.L2,Ll)

11 IF(PERIOD(L3.L2,Ll)-TENP6) 13.12.12
12 TMOD = ARG

GO TO 14
13 RIOD = ~D(ARG,PERIOD(L3,L2,L1))

C
C ***** Select Method of Defining Model Constants. *****
C

14 IF (B(L3,L2,L1)) 100,100,200

203 ARG =
? A =

C c *****
C
204 ARG =

w =

c
C ***** Input Model Constants Directly. *****
C
100 AA = A(L3,U.Ll)

GO TO 204
C
C ***** Define Model Constants from Geometrical Considerations. *****
C
200 IF (A(L3,U,Ll)-TENM2) 996,201,201
201 m990 = ONE - TENM2

IF (ET990-A(L3.L2,Ll)) 996,202,202
202 IF (B(L3.L2,Ll)-TRX?) 996,203,203

"3/DSQRT(A(L3,U,Ll)) - ONE
(PTSOO/B(L3.L2,Ll))*DLOG(ARG)

Function Evaluation *****

ONE/DCOSH(AA*IMDD)
YO (~ 3 , L2, L1) + AA*C (L3, L2, L1) *ARG*ARG

Appendix C: ASTATE07.FOR - 1

c
996 WRITE(6,1072)

WRITE(8,1072)
Go To 999

C

C

C WRITE(6.1071)
C WRITE(8.1071)
C

C

C ***** No-1 -it *****

997 CONTINUE

C e * * * * EXIT ttttt

999 RETURN
END

C2345678901234567890123456789012345678901234567890123456789012345678901234567890
C2345678901234567890123456789012345678901234567890123456789012345678901234567890
C2345678901234567890123456789012345678901234567890123456789012345678901234567890

Appendix C: ASTATE07.FOR - 2

c
c
C ***** This subroutine Defines the 'ACTUAL," (i.e., the Reference)
C Plant Model including both Input and Output Signals from
C On-Line Test Data.
C
C
C ***** Start SUBRtXlTNE2 DSPATE *****
C
C
C
C ***** The "[LEyLAM).OFTIMNNITypECOM.INC' File is Included here.
C
C
C
C
C
C

C
C
C

C

C
C
1000
1001
1071
1072
7011

C
C

This file contains the statements which establish and define:
1) the Principal CCMKSI Blocks; 2) the Data TYPE of the
Principal Parameters, Arrays, and Vectors: and 3) the
D-ICN of the Principal Arrays and Vectors of the
OFTIMNN System.

INTEGEFt.4 JERR

RERL*8 X(NL2DIM), Y(NL2DIM)

FORMAT(2HO)
MRMAT(2Hl)
FORMAT(42HO ***** NORMAL EXIT FROM DSTATE * * * * * / / I
FORMAT(41HO ***** ERROR EXIT FRGM DSTATE * * * * * / I)
FUFUYAT (4D20.7)

C ***** Initialisation *****
C
C ***** Subroutine DSTATE has NGT been &fined yet.
C

C

C

IF (JERR) 996,997,996

C * * * *e Error &it * * e * *

996 hlRITE(6.1072)
WRITE (8,1072
Go To 999

C

C

C WRITE(6.1071)
C WRITE(8.1071)
C

C ***** N o m 1 &it *****

997 CONTINUE

C **tt* =IT **et*

c
999 RE!."

END

C2345678901234567890123456789012345678901234567890123456789012345678901234567890
C2345678901234567890123456789012345670901234567090123456709012345678901234567890
C2345678901234567890123456789012345678901234567890123456789012345678901234567890

Appendix C: DSTATE.FOR - 1

Appendix C: DSTATE.FOR - 2

~~
~~

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C

C

C
C

***** This subroutine Defines the 'ACNAL' (i.e.,
plant Model including both Input and Output
Stored Data Table.

the Reference)
Signals from a

***** Start SUBROUTINE TSPATE *****

***** The ~[KEYLAND.O~IMIUN]TYP~.INC' File is Included here.
This file contains the statements which establish and define:
1) the Principal CCM4ON Blocks; 2) the Data TYPE of the
Principal Parameters, Arrays, and Vectors; and 3) the
DIMENSION of the Principal Arrays and Vectors of the
OPT- System.

INCLUDE ' [LEYLAND.OPTIM"lTYPEcCM.INC'

1000 FORMAT(2HO
1001 m T (2 H 1
1071 MXMAT(42HO ***** NORMAL EXIT FFKM TSTATE * * * * * / / I
1072 FORMAT(41HO ***** ERROR EXIT FROM TSTATE ***** / I)
1073 MRMAT(66HO ***** ERROR EXIT FRCM =ATE WHR4 THE MAXIMUM NUMBE

1R OF TABLE711X.66H VALUES DEFINED BY ' T B W " IS EXCEEDED.
2 ***** / /)

7011 FoRMAT(4D20.7)
C
C
C ***** Initialisation *****
C

m = o
LTBL. = ISTEP
IF (LTBL-TBW) 10, 10, 995

10 T = Tl'BL(LTBL)
c
C ***** Evaluate for Both the Plant Input and Plant Output Vectors *****
C

C
C ***** Evaluate for Each Vector Elenent *****
C

M) 310 L1=1,2

IF (L1-2) 373, 371, 996
371 IF ("ID) 372, 372, 373
372 CALL STATF3N(X,Y,JERR)

IF (JERR .NE. 0) Go TQ 996
GO TO 310

373 M) 210 U=l,NL2(Ll)
GO TO (201,202). L1

201 X(L2) = XTBL(L2,LTBL)
GO To 203

202 Y(U) = YTBL(L2,LTBL)
203 IF (JERR) 996,210,996

210 CONTINUE

310 CONTINUE

C

C

C
C ***** Error Exit when the Maximum Number of Table Values defined
C by T%W' is Exceeded. *****

Appendix C: TSTATE.FOR - 1

C
Go To 997

WRITE (6,1073)
WRITE (8,1073)
Go To 999

995 JERR = 1

C

C

C ***** Error Exit * * * * *

996 WRITE(6,1072)
WRITE (8,1072)
Go M 999

C

C

C WRITE(6,1071)
C WRITE(8,1071)
C
c ***** EXIT *****
C

C *e*** No-1 bit * * * * *

997 CohPIINuE

999 RETURN
END

C234567890123456789012345678901234567890~234567890123456789012345678901234567890
C2345678901234567890123456789012345678901234567890123456789012345678901234567890
C2345678901234567890123456789012345678901234567890123456789012345678901234567890

Appendix C: TSTATE.FOR - 2

~~ ~

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C

C

C
C

***** This subroutine Defines the "ACNAL' (1.e.. the Reference)
Plant -1 including both Input and Output Signals from a
User Supplied Model.

***** Start SUBROUTINE USTATE *****

***** The '[LEyLAND.OPTIM"lTYPMIoM.INC" File is Included here.
This file contains the statements which establish and define:
1) the h-incipal c€" Blocks; 2) the Data W E of the
Principal Parameters, Arrays, and Vectors; and 3) the
DIMEXSIW of the Principal Arrays and Vectors of the
OPTIMNN System.

1000 FORMAT(2HO 1
1001 FORMAT(2H1)
1071 FORMAT(42HO ***** NORMAL EXIT FRCM USTATE ***** / /)
1072 FORMAT(41HO ***** ERROR EXIT FROM USATE *****//I
7011 FoRMAT(4D20.7)

C
C
C ***** Initialisation *****
C
C ***** Subroutine USTATE has NOT been defined yet.
c

IF (JERR) 996,997,996
C

C

C * *e* * Error ~t *****

996 WRITE(6.1072)
WRITE(6.1072)
Go To 999

C
C ***** Normal
C

C WRITE(6,1071
C WRITE(8.1071
C

997 CONTINUE

C2345678901234567890123456789012345676901234567690123456769012345676901234567690
C2345678901234567890123456769012345676901234567690123456769012345676901234567690
C2345678901234567690123456769012345676901234567890123456789012345676901234567690

Appendix C: USTATE.FOR - 1

REPORT DOCUMENTION PAGE

Jane Anne Leyland

7. PERFORMING ORGANIZATION NAME(S) AND ADDRWES)

Form Approved I OMB NO. 0704-0188

8. PERFORMING ORGANZATION
REPORT NUMBER

I I March 2001 I Technical Memorandum

14. SUBJECT TERMS

Optimal Neural-Network Controller, Optimal Closed-Loop Controller,
Neural-Network Controller

I 4. TITLE AND SUBTITLE

15. NUMBER OF PAGES

268
16. PRICE CODE

A Closed-Loop Optimal Neural-Network Controller to Optimise
Rotorcraft Aeromechanical Behaviour: Volume 2, Output from Two
Sample Cases
6. AUTHOR(S)

5. FUNDING NUMBERS

7 12- 10- 12

Ames Research Centre
Moffett Field, CA 94035-1000

9. SWNSORlNGlMONITORlNG AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

A-00V0033

10. SPONSORlNWUlONlTORlNG
AGENCY REPORT NUMBER

NASA TM-2001-209623

I 11. SUPPLEMENTARY NOTES

Point of Contact: Jane Anne Leyland, Ames Research Centre, MS T12-B, Moffett Field, CA 94035-1000
Tel No (650) 604-4750 I
12a. WTRlBUTlONIAVAlLABlLIM STATEMENT

Unclassified --- Unlimited Distribution---Standard
Subject Category 08

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 2ao words)

A closed-loop optimal neural-network controller technique was developed to optimise rotorcraft
aeromechanical behaviour. This technique utilises a neural-network scheme to provide a general
non-linear model of the rotorcraft. A modem constrained optimisation method is used to determine and
update the constants in the neural-network plant model as well as to determine the optimal control vector.
Current data is read, weighted, and added to a sliding data window. When the specified maximum
number of data sets allowed in the data window is exceeded, the oldest data set is purged and the
remaining data sets are re-weighted. This procedure provides at least four additional degrees-of-freedom
in addition to the size and geometry of the neural-network itself with which to optimise the overall
operation of the controller. These additional degrees-of-freedom are: 1. the maximum length of the
sliding data window, 2. the frequency of neural-network updates, 3. the weighting of the individual data
sets within the sliding window, and 4. the maximum number of optimisation iterations used for the
neural-network updates.

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT I Unclassified I Unclassified I I

Standard Form 298J7:v .2-89)
D - r r A W hi A L I C I h A NSN 7540-01-280-5500

